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ABSTRACT
The World Championship in Cybernetic Building Optimization (WCCBO) was held in 2019 to test partic-
ipants’ ability to optimize buildings cybernetically. Office buildings with a total floor area of 10,000 m2

were built in cyberspace, one for each of the 33 participating teams. The cyber buildings were controlled
by BACnet, and the participants competed to show their operational skills by tuning the HVAC system of
their respective cyber buildings online. The ability of optimization was evaluated in terms of both energy
consumption and thermal comfort, and their scoreswere published online in real-time. A total of 339 differ-
ent operations were tested during the two-month competition period. The top-ranked team succeeded in
reducing energy consumption and thermally dissatisfied occupant rate by 12.1% and 21.0%, respectively.
In this paper, we report on the examination of the rules and schedule of this championship as well as the
analysis of the participants’ scores.

ARTICLE HISTORY
Received 1 November 2019
Accepted 7 March 2020

KEYWORDS
Emulator; HVAC; operation;
simulation; optimization;
BACnet

1. Introduction

Energy consumption related to buildings accounts for approxi-
mately 40% of total energy consumption worldwide (IEA 2008).

The life cycle energy of a building can be divided into con-
struction and operational phases, most of which occurs during
the operational phase. In recent years, the number of cases of
buildings whose energy performance has been improved by a
large initial investment has been increasing, and the ratio of
energy consumption at the construction stage tends to also
increase (Mohammed et al. 2013). However, according to the
review by Sartori and Hestnes (2007) and the study of Chau,
Leung, andNg (2015), comparing the life-cycle energy consump-
tion between traditional and energy-saving buildings, more
than 50% of life-cycle energy is spent in the operational phase,
even with energy-saving buildings. Therefore, the problem of
how to control and operate the buildings’ HVAC (Heating, ven-
tilation, and air conditioning) system should be sufficiently con-
sidered, even today.

Commonly, computer simulations are used to predict the
energy consumption of a building during the operation phase.
This is because a building is a complex system, having a large
number of elements with non-linear behavior, and its energy
consumption is, therefore, difficult to predict by hand calcula-
tion.

General building energy simulation software predicts the
energy consumption for specific conditions, and the settings of
these conditions canbe changed. These are, for example, (1)wall
and insulation materials and thickness, machine efficiency, (2)
control parameters, or (3) outside air conditions. The first con-
dition are hardware specifications that can be changed during
the design and construction phase, the second condition can be
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changed during the operational phase, and the third condition
cannot be changed by humans.

By solving this inverse problem, it is possible to estimate con-
ditions (hardware specifications and control parameters) that
minimize the energy consumption in the operational phase. The
inverse problem is the problem of estimating the causal factors
xi such that the observed value y becomes a desired value with
respect to the model represented by y = f [xi (i = 1, 2, . . . n)]
(Zhang et al. 2015; Rouchier 2018). In the building energy simu-
lation, y is the energy consumption, and xi are hardware specifi-
cations and control parameters.

However, for the energy minimization applied by the inverse
problem to be effective, the simulation model must accurately
predict the energy consumption of a real building. In fact, it has
beenpointed out that the twodonot alwaysmatch, and this gap
is called ‘Performance Gap’ (Wilde 2014).

Specific causes of such a gap include, for example, the follow-
ing: (1) The model does not completely formulate everything in
accordance with reality and is limited by some abstraction. (2)
Since the connection of components and the setting of parame-
ters are usually performed by humans, the results differ depend-
ing on their skill. Improper input produces meaningless results,
called the ‘Garbage In Garbage Out’ rule. (3) Real buildings are
used on a different schedule than assumed by the simulation.
(4) In a real building, the ideal control assumed by the simula-
tion model is not realized (Khoury, Alameddine, and Hollmuller
2017). These are issues of the ‘Limitations of energy model-
ing’, some of which are discussed in detail at CIBSE (2015). To
eliminate the Performance Gap, these issues must be resolved.

The aim of this study is to eliminate the gap caused by the
assumption of an ideal control (cf. point 4.). The reason for
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providing the assumption of an ideal control is that modeling
all control mechanisms requires a lot of time and effort to set
the parameters of the model, and significantly increases the cal-
culation time. On the other hand, in a real building, such ideal
control cannot be automatically realized, so that a difference
occurs between the calculation result and reality. Two specific
examples are shown below.

The first example is the time delay of the heat source model.
Most heat source models used in building energy simulations
are static models, and it is assumed that if chilled/hot water is
required, it can be supplied instantaneously.When such amodel
is used, unlike in the case of an actual building, it is not neces-
sary to estimate the start-up time required for the heat source
to supply water at a set temperature point and to consider an
appropriate starting time. In some real buildings, to avoid the risk
of the inability to cool or heat, the heat source may be started
up much sooner than needed, consuming more energy than
estimated in the simulation.

Another example is the calculation of water and air flow.
Many models do not use a circuit network model, and it is
assumed that the water and air flow can be adjusted to exactly
the values required by each device. Therefore, whether the con-
trol of the valve or the damper is good or bad is not represented
in the model. These control failures not only affect the energy
consumption of the pump or fan but also increase the energy
consumption by an oversupply of heat or worsen the thermal
environment by an insufficient supply of heat.

There are twoapproaches to reduce thegapdescribedabove.
One approach is to tune the equipment sufficiently to eliminate
control failures in the actual building and bring it closer to the
ideal state. Another approach is to express the control failure
with a simulation model.

To date, however, has not been possible to quantify the
engineer’s ability to tune, so either of these two approaches
are difficult to employ. To adopt the first approach, it is neces-
sary to educate a large number of engineers with high tuning
skills. However, if the engineer’s ability cannot be quantified, the
level of education cannot be determined. To adopt the second
approach, it is necessary to formulate the risk of control failures
due to the engineer’s poor ability. However, this risk cannot be
expressedunless the variation in the abilities of engineers canbe
observed quantitatively.

The reason that it is difficult to quantitatively evaluate the
tuning ability is that a building is a one-piece product and tends
to be very heterogeneous. Since different hardware has vary-
ing energy consumption, simply comparing the difference in
energy consumption of different buildings does not reveal the
difference in the ability of the engineer who tuned the control.

For a pure comparison of tuning abilities, the various condi-
tions affecting the energy consumption of a building should be
exactly the same, but in reality, such uniform conditions cannot
be met.

When the comparison in a real building is not an option, an
alternative is touse a simulationmodel.With a simulationmodel,
buildingsunder exactly the sameconditions canbeeasily copied
innumerably. Of course, the simulation model used here does
not assume the ideal controls that cause a gap as described
above. According to the above example, the heat capacity and
the time delay of the heat source are mathematically expressed,

the network of pipes andducts is solved, and control parameters
for these are made operable by a user.

A highly realistic simulation model that can be used for such
a purpose is generally called an emulator. The use of emulators
in the building equipment field began with a study reported in
Annex 17 of the International Energy Agency (IEA) in the 1990s
(Lebrun and Wang 1993; Vaezi-Nejad et al. 1991; IEA 1997).
Later, IEA Annex 25 examined applications for fault detection
(IEA 1999) and, more recently, Bushby et al. (2001, 2010) devel-
oped a comprehensive emulator that combines air conditioning
and fire simulations (Virtual Cybernetic Building Testbed: VCBT).
The authors also developed an emulator system for evaluat-
ing the tuning ability of equipment, which can predict not only
the energy consumption, but also the thermal sensing of office
workers (Togashi and Miyata 2019).

Weheld a championship to compete for thepurpose of quan-
titatively evaluating the tuning ability by using this emulator
system. Promoting the development of new tuning technolo-
gies, improving the tuning skills of the participants, and quanti-
tatively capturing the variation in building performance caused
by the tuning ability, were also the purpose of the competition.
In this report, we outline the rules, schedule, attributes of the
participants, and results of this championship.

2. References for our competition

In the past, several attempts have been made to promote
technological developments in the field of building equipment
through competition. These precedents served as a reference for
designing our championship.

2.1. The Great energy Predictor Shootout

The best-known competition in this field is the energy predic-
tion competition conductedby theAmerican Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE; Tech-
nical Committee 4.7 and 1.5) in the 1990s. The details of this
competition are reported by Kreider and and Haberl (1994).

At the time, various newmethods such as the neural network
back propagation algorithm (Rumelhart, Hinton, and Williams
1986) were being developed to solve the prediction problems
of nonlinear systems with time delays. In this context, the Great
Energy Predictor Shootout I was carried out to competitively
compare prediction methods and introduce knowledge from
other related fields to that of building management.

The competition used six months of building operation data
collected at a university facility in Texas (with a total floor area
of approximately 30,000m2). Detailed information on the build-
ing was not disclosed to the participants until the end of the
competition. The six-monthdataweredivided into a four-month
interval (September to the end of December, 1989) and a two-
month interval (January to the end of February, 1990), which
were used, respectively, as training data for constructing a pre-
diction model and test data for evaluating the prediction per-
formance for unknown inputs. The data items to be predicted
(hereafter, ‘output data’) were building power consumption and
chilled and heating water load, while the data items that could
be used for the prediction (hereafter, ‘input data’) were the out-
door air conditions (dry bulb temperature, absolute humidity,
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wind speed, and horizontal solar radiation). Training data were
provided as sets of input and output data, while only input data
were provided as test data.

A total of 150 teams obtained training data for competing in
the participation. Of these, 21 teams continued in the compe-
tition till the end. Test data covering the period of January 1st
to February 28th, 1990 were provided sequentially. The training
data included data from Christmas and the New Year holidays,
during which the energy consumption was lower than usual.
Abnormaldata causedbypipe-freezingwere included indata for
the extremely cold season. The sources of this information were
not conveyed to the participants, who had to independently
determine how to handle abnormal data.

The performance of the prediction model was evaluated
using the coefficient of variation (CV) shown in Equation (1), in
which ydata,i, ypred,i , ydata, and n are, respectively, the data value
of the dependent variable corresponding to a particular set of
independent variable values, the predicted dependent variable
value for the same set of independent variables, the mean value
of the dependent variable testing data set, and the number of
data records in the testing set.

CV =
√∑n

i=1 (ypred,i − ydata,i)
2

n · ȳdata
(1)

In addition to an overall report on the competition by Kreider
and and Haberl (1994), many of the participants individually
reported their own prediction methods (Feuston and Thurtell
1994; Iijima et al. 1994; Kawashima 1994; MacKay 1994; Ohlsson
et al. 1994; Stevenson 1994).

2.2. The Great energy Predictor Shootout II

Following the success of The Great Energy Predictor Shootout, a
second competition was held in 1994 (Haberl and Thamilseran
1996). In addition to the university facilities that were targeted
during the first round of the competition, university facilities
with a total floor area of approximately 14,000 m2 were added
to the prediction target. The training data were placed on an
FTP server, making it possible for any individual to obtain the
data necessary for participation. Despite this, there were fewer
participants than in the first round: only 50 individuals accessed
the ‘readme.txt’ on the FTP server describing the details of the
competition; 11 individuals downloaded the data used in the
competition andonly 4 teamsparticipated in and completed the
competition. An additional goal of this second competition was
to evaluate the energy savings of a retrofitted building. The par-
ticipantswere first given training and test data for bothbuildings
prior to the energy saving improvement, and they competed in
predicting the modeled energy performance in the same man-
ner as in the first contest. They were then provided operational
data obtained after the retrofit and tasked with modeling the
effects of the retrofit based on the difference between the pre-
andpost-energy consumption. The effect of the retrofitwas then
estimated from the difference between this value and the actual
measured one.

As in the first round, each participant individually reported
on the prediction methods they used in the second round of
the competition (Chonan, Nishida, and Matsumoto 1996; Jang,

Bartlett, and Nelson 1996; Katipamula 1996; Dodier and Henze
1996).

2.3. Heat load prediction Public competition

The Heat Load Prediction Public Competition was conducted as
part of the activities of the Thermal Storage Optimization Com-
mittee organized by the Society of Heating, Air-Conditioning
and Sanitary Engineers of Japan (SHASE) during 1995–1998
(SHASE 1998). To optimize the heat source operation of a heat
storage-type air conditioning system, it is necessary to predict
the next-day heat load. To assess the various heat load predic-
tion methods that had been proposed at the time, the com-
mittee held a public benchmark competition to compare the
methods.

Two competitions – denoted as trials I and II, respectively
in this paper – were held in August and October of 1998. The
goal of both trials was to predict the next-day heat load. Dur-
ing trial I, the next-day weather conditions, indoor temperature
and humidity conditions, and HVAC operation schedule – none
of which can be obtained precisely in advance in reality – were
provided. For trial II, a more realistic case was applied in which
only the weather forecast and HVAC operational schedule were
provided.

Eighteen and 14 teams, respectively, participated in trials I
and II. During trial I, e-mails were used to exchange information
such as prediction results, with the organizer’s side sending day-
ahead input data for prediction to the participating teams via
e-mail, and the participants making predictions based on this
information and sending the prediction results back to the orga-
nizer’s side. After confirming the reply, the organizerwould send
the next day’s input data.

This approach was quite complicated and, in particular, it
was impossible to prevent rule violations in terms of informa-
tion collaboration among participants. Therefore, in trial II, a
system in which all input and output data were provided from
the beginning was instituted under an assumption of partici-
pant conscientiousness. For both trials I and II, the performance
of the predictive models was evaluated in terms of the sum of
the squared difference (SSD) between the predicted and actual
results, as shown in Equation (2).

Manyparticipants reportedon theheat loadpredictionmeth-
ods they used in this championship. The championship winner
was a researcher in the field of information engineering who
did not specialize in building equipment, suggesting that the
championship succeeded in introducing expertise from differ-
ent fields.

SSD =
n∑
i=1

(ypred,i − ydata,i)
2 (2)

2.4. Championship policies based on precedents

The competitions described above took place during the 1990s,
and although some involved the use of FTP servers and email,
much of the work was performed manually. In the heat load
prediction competition of SHASE, the workload involved in
exchanging e-mails with the participants was heavy, and there-
fore, the system used to evaluate the results was changed for
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trial II. To increase the number of participants and expand the
scale of the competition, it was necessary to establish a system
that automates clerical work as much as possible. In particu-
lar, automation was essential for our championship because,
unlike the preceding competitions, the evaluated scores had to
be obtained via simulation in addition to simple comparisons
with the correct answer in terms of the energy consumption or
heat load.

Many of the participants of the previous competitions
reported their calculation methods. Future development of
this field will benefit from the knowledge of not only which
approaches win and lose, but also what kind of performance
is obtained using a specific type of method. Despite the desir-
ability of having participants disclose the methods they use in
competition, thedecision todisclose this information rests solely
with them; the organizers cannot force disclosures. Accord-
ingly, we decided to save and make public the operational data
for the highest-graded approaches. It was possible to obtain
an overview of individual participant approaches by analyzing
these data.

In general, operational data often include abnormal val-
ues reflecting measurement problems or instances with bro-
ken or malfunctioning equipment. Additionally, even in cases in
which the equipment is operating normally, the measured val-
ues can gradually shift as a result of aging. For example, the
data distributed to the participants of the Great Energy Predic-
tor Shootout I included abnormal values arising from extended
holidays and a broken pipe. The method to be used to deal
with such abnormal values depends on operational ability. We
therefore initially considered testing resilience by intentionally
including an abnormal value, but eventually decided not to
because the task became too difficult to implement during our
championship. In the future, however, this approach should be
considered to increase the difficulty of the competition.

One reason for the decreased number of participants dur-
ing the second Great Energy Predictor Shootout is that the
theme was changed to the prediction of energy-saving renova-
tion effects. Although this is a valuable theme, it cannot clearly
differentiate between winners and losers. To increase the num-
ber of participants, it is necessary to clarify the conditions for
victory and defeat and to gamify the competition (i.e. impart a
higher ‘fun component’ to it). Therefore, in our championship,
the method for calculating the score was clearly demonstrated
prior to the event, and the participants’ scores were displayed in
real time during the competition period.

It should be noted that our championship was more compli-
cated than previous events, as the purpose of our competition
was not to predict a single number such as heat load or energy
consumption, but to tune thousands of parametric controls for
improving energy and comfort. The participants from the infor-
mation technology field were generally not expected to under-
stand the details of the building equipment physical system,
while the participants from the building operation and man-
agement field were generally expected to have no experience
with programs for communicating with BACnet. For this reason,
a simple ‘readme’ file was insufficient for providing the infor-
mation needed for participation; instead, a detailedmanual that
described how to implement BACnet communication programs
and tutorials on building optimization were developed.

Table 1 shows a comparison of previous similar competitions
and this championship.

3. Preparations for the world championship of
Cybernetic building optimization

In this section, we explain the rules of our championship (eval-
uation method and schedule) and provide information on the
participants.

3.1. Determination of evaluation criteria

As already mentioned, the championship was hosted on the
emulator system described in our previous report (Togashi and
Miyata 2019). This systemcan evaluate howenergy performance
and thermal comfort change with respect to the default oper-
ational parameters using the energy reduction ratio (ERR) and
the dissatisfied reduction ration (DRR) given in Equations (3)
and (4), respectively, in which E is the primary energy consump-
tion,D is the dissatisfaction rate, the subscript r indicates default
operation, and the subscript opt indicates optimized operation.

ERR = Er − Eopt
Er

, (3)

DRR = Dr − Dopt

Dr
. (4)

The thermal load calculation model and the static equipment
models used in the emulator were verified using the BESTEST
(Togashi and Tanabe 2009) and SHASE guidelines (Ono, Ito, and
Yoshida 2017; SHASE 2016), respectively. For details on each
component in the emulator system, such as calculating the
physical model for each equipment model or occupant thermal
sensation, please refer to our previous report.

To determine the winner, the energy-savings and thermal-
comfort indicatorswere integrated into a single score. Searching
for an optimal point in which several performance indexes are
combined in this manner is called multi-objective optimization.
According to Nguyen, Reiter, and Rigo (2014), approximately
40% of the optimization research in the building equipment
field involves solving multi-objective optimization problems.
The simplest approach to combine multiple indicators is a lin-
ear combination, as represented by Equation (5), in which wERR

is a weighting factor that takes a value ranging from 0 to 1.

wERRERR + (1 − wERR)DRR (5)

If the weighting factor value in Equation (5) is biased, a prob-
lem may occur, as described later. Figure 1 is an example of
pareto optimum solution selected by a linear combination func-
tion. Contour lines of two linear combination functions with
different weighting factors are drawn. A one-dot chain line has
a small weighting factor, and a dotted line has a large weight-
ing factor. The solid curve is a pareto front that can be real-
ized by changing the operation. There is a trade-off relationship
between reduction in energy consumption and the dissatisfac-
tion rate. Therefore, we note a downward trend. In addition, the
amount of dissatisfaction that can be reduced by using one unit
of additional energy will degressively decrease, resulting in a
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Table 1. Comparison of previous similar competitions and this championship.

The great energy predictor shootout Heat load prediction public competition

Name I II First trial Second trial This championship (WCCBO)

Competition period 1/1/1990–2/28/1990 6/1/1994–11/1/1994 8/1/1998–8/31/1998 10/1998 6/7/2019–8/7/2019
Target of the
competition

Predicting the next
day’s energy
consumption

Predicting the next
day’s energy
consumption

Predicting the next day’s
heat load

Predicting the next day’s
heat load

Optimizing energy use
and thermal comfort

Target building (Total
floor area)

Real university building
(30,000 m2)

Real university building
(14,000 m2)

Real research center
building (38,400 m2)

Real office building (5400
m2)

Virtual office building
(10,000 m2)

Evaluation criteria Coefficient of variation
(Equation 1)

Coefficient of variation
(Equation 1)

Sum of the squared
difference (Equation 2)

Sum of the squared
difference (Equation 2)

Effective energy
reduction ratio
(described in Section
3.1)

Number of participants 21 4 17 13 34 (described in
Section 3.3)

Data submission
method

Submit to organizer in
bulk

Submit to organizer in
bulk

Submit to organizer by
email every day

Submit to organizer in
bulk

Submit to server at any
time

Publication of score After the competition After the competition After the competition After the competition Calculated immedi-
ately on the server
(in real time)

Figure 1. Example of pareto optimum solution selected by a linear combination
function.

convex shape in the area to the upper right. For linear combina-
tion functionswith a smallweighting factor, the optimal solution
is (A), whereas the optimal solution for large weighting factors is
(B). As is apparent from the figure, changing theweighting factor
significantly modifies the optimal solution. When a very biased
weighting factor is used, the point where the energy consump-
tion or the number of dissatisfied occupants increasesmay even
become the optimal solution.

To avoid awarding high scores to operations that are
extremelybiased (asdescribedabove), in this paper,weawarded
the total score by applying Equation (6) to calculate the effective
energy reduction ratio (E2R2), which has been defined in the fol-
lowing section. This conditional equation adds conservativeness
to the calculation of an optimal solution. Figure 2 shows several
values of E2R2 plotted as contours against ERR and DRR on the
x-and y-axes, respectively. Note that the value of E2R2 is zero in
the second and fourth quadrants of the graph,wherein tradeoffs
that ignore either comfort or energy saving exist. Moreover, the
contour lines of E2R2 have ridges following the line representing
ERR = DRR. Unlike a linear weighting function, E2R2 approaches
zero when either indicator (ERR or DRR) approaches zero. In this
manner, if an operation that neglects one index is performed,
the value of E2R2 drops significantly. Figure 3 shows the pareto

Figure 2. Contour lines of the Effective Energy Reduction Ratio (E2R2) function.

optimal solution with the E2R2 function. The optimal solution is
(C), and it is evident from the figure that this formulation makes
it more likely to ascertain approaches that can improve energy
savings and comfort in awell-balancedmanner, thus helping the
participant to win.

E2R2 =
{
ERR · DRR (0 < ERR ∩ 0 < DRR)

0 (other)
(6)

3.2. Determination of schedule

As noted in a previous report (Togashi and Miyata 2019),
we built an emulator system to remotely control the build-
ing model online using BACnet communication. However, this
online approach had not been used in previous competitions,
and there was a risk that limiting participation to online con-
trol only from the beginning of the championship would reduce
the number of participants and, therefore, the amount of data
that could be acquired. Accordingly, the championship period
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Figure 3. Pareto optimal solution with the E2R2 function.

(from June 7th to August 7th, 2019) was divided in half, with the
first and last months constituting the offline and online periods,
respectively.

The offline and online periodswere administered in the same
manner, namely, through an emulator installed on a server. In
the latter period, however, BACnet communicationwas allowed.
The scores of the championship participants were disclosed to
all participants in real time. Figure 4 shows the real-time score
evaluation system.

All participants were given a separate server (the Child server
in Figure 4) on which the emulator was always running. When
the results for one year were obtained, they were written out
to the file ‘resultTable.csv.’ The collected calculation results were
published by a Web server (the Parent server in Figure 4).

To start the server-side emulator calculation process, the con-
trol file (‘controller.bin’ in Figure 4) in which the control strategy
(setpoint value and operation schedule) of the emulator was
recorded had to be uploaded. When a participant running the
emulator on a local PC controlled the settings, a control file
was automatically generated. This batch-type control method is
similar to the control method used by conventional energy sim-
ulation software and was therefore easy for the participants to
understand; however, original feedback control using, for exam-
ple, the room temperature or the behavior of the occupants
inside the emulator was not possible. To perform such controls,
it was necessary to connect directly to the server-side emulator
online, whichwas permitted only during the online period in the
second half of the championship.

During the online period, the participants were able to con-
nect the emulator server via a virtual private network (VPN) that
could be used for BACnet communication with the emulator.
The participants could develop and run their own optimization
software from either a local PC or a cloud server with a stable
network to control the emulator freely.

The execution speed of the server-side emulator could be
freely set by the participants and accelerated up to about 1000
times in real time. This acceleration rate could also be con-
trolled via BACnet communication. During the offline period, a
maximum acceleration rate could be set, but during the online
period, the value of the acceleration rate was very important: if

Figure 4. Real-time score evaluation system.
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Table 2. Participants’ affiliations and job categories.

No. Affiliation Job category No. Affiliation Job category

01 Satoh Energy Research Research 18 Tokyo Denki University Education institution
02 Hokkaido University Education institution 19 Anonymous Building constructor
03 Nihon Sekkei Building designer 20 Kanden Facilities Building manager
04 Nagoya City University Education institution 21 Anonymous Other
05 Chiba University, Hayashi Laboratory Education institution 22 Anonymous Building designer
06 Kajima Technical Research Institute Research 23 Anonymous Building constructor
07 Ritsumeikan University Education institution 24 Kogakuin University Education institution
08 Waseda University, Tanabe Laboratory Education institution 25 Anonymous Building Design
09 Tokyo Polytechnic University Education institution 26 The University of Electro-Communications, Sato

Laboratory
Education institution

10 Sony CSL and Daiwa House Industry Research 27 Anonymous Other
11 (Canceled) (Canceled) 28 Kansai Electric Power Research
12 Kyushu University, Sumiyoshi Laboratory Education institution 29 The OpenCAE Society of Japan Other
13 Shibaura Institute of Technology Education institution 30 Anonymous Other
14 Anonymous Building constructor 31 Anonymous Research
15 Sanko Air Conditioning Building constructor 32 Tokyo City University Education institution
16 Anonymous Other 33 Kansai Electric Power Other
17 Kanden Energy Solution Building manager 34 Anonymous Research

it was too slow, the number of challenges to improving opera-
tions would decrease; if it was too fast, the original optimization
software calculations could not keep up or the communication
would not be carried out in time. In otherwords, if excellent opti-
mization software that operated lightly could be developed, the
number of operational trials could be stably increased. Evalua-
tion from this point of view, including the evaluation of commu-
nication stability and calculation speed, is very important when
applying optimization software to real buildings.

It was expected that many participants would have no expe-
rience in developing control programs using BACnet protocol.
To address this, we distributed two sample programs written in
five different program languages (JavaScript (node.js), C#, Basic,
C++, and Python). The first sample was titled ‘Air temperature
control based on Fanger’s PMV (Fanger 1970)’ and the second
sample was titled ‘Slat angle control of blinds based on solar
altitude.’

3.3. Information of the participants

Table 2 lists the participants’ affiliations and job categories.
Thirty-four teams had announced their participation by the
deadline; one team subsequently canceled, leaving 33 teams for
the final competition roster. Participants included university lab-
oratories, corporate research institutions, designers, construc-
tors, and managers who were interested in building operations.
Some of the ‘others’ included researchers in the information
technology field.

On the first day of the championship, a briefing session was
held to demonstrate the use of the emulator software. It was
an optional session, and 24 of 33 teams – a total of 66 peo-
ple – participated. A photo of the briefing session is shown in
Figure 5.

The participants in the briefing session were provided with
the software shown in Figures 6 and 7, which were used to con-
duct a tutorial. The application in Figure6displays the simulation
status of the emulator in real time, while that shown in Figure 7
was used to send control signals fromMicrosoft Excel. Both pro-
grams communicated with the emulator via BACnet. As already
mentioned, the participants were free to develop their own soft-
ware using BACnet, but most participants used the provided

Figure 5. Scene from the briefing conducted on the first day of the Championship.

applications for optimization. The software was also distributed
to teams that did not attend the briefing.

4. Results of the world championship of Cybernetic
building optimization

4.1. Relationship between the number of calculations and
scores

Figure 8 shows the number of calculation trials carried out by
each team during the two-month competition period. A total of
339 calculations were performed on the server side, averaging
10.3 times per team. Team 20 carried out the most calculation
trials (53), corresponding to nearly a calculation per day.

Figure 9 shows the relationship between the number of trials
and the final E2R2 (comprehensive score) of each team. An inter-
view of the four top-scoring participants after the championship
revealed that each of the four teams had performed more than
50 simulations each on their local PC. An ideal building operator
would attain thehighest score inone simulation.However,many
participants recheck the results by tuning their parameters. This
suggests that building operational performance improvement
can be achieved not only through inspiration but also through
the application of a gradual trial-and-error process. However, it
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Figure 6. Emulator information display software.

Figure 7. Emulator control software.

was also true that the rate of increase in the score decreased
as the number of trials increased, indicating that the rate of
discovery of effective measures for operational improvement
decreased after repeated study of the problem.

4.2. Score changes and final results

Figure 10 shows theweekly changes in the distribution of scores
over the course of the first month (offline portion) of the compe-
tition. It can be seen that the scores increased as the days pass.

Initial attempts focused on increasing ERR (energy saving per-
formance) and DRR (comfort performance) to the same extent.
Later, DRR-focused operations increased in frequency, with the
participants intensively searching for operating points at an ERR
and a DRR of approximately 10 and 20%, respectively. Many
teams with high scores operated around these points.

Figure 11 shows the final score distribution at the end of the
online period. An examination of the modes of operation with
an emphasis on energy performance confirmed that an energy
reduction of up to approximately 15% was possible before the
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Figure 8. Number of calculation trials per team (descending order).

Figure 9. Relationship between the number of trials conducted and the final E2R2
of each team.

decline in comfort became too large. As it was found to be too
difficult to achieve both optimal comfort and energy reduction
through further adjustment, the final maximum total score was
the same as that during the offline period.

Figures 12–14 show changes in ERR (energy saving perfor-
mance), DRR (comfortable performance), and E2R2 (comprehen-
sive score) by team over the course of the championship. The
x-axis denotes the date, showing the change from the start date
to the end date of the championship. A vertical line is drawn at
7/7. The left side depicts the offline period, and the right side
depicts the online period. Different line styles distinguish the
best 10 teams, and the remaining teams are shown via light
solid gray lines. As energy savings can obviously be increased by
shutting off all HVAC systems while disregarding comfort, only
operations at a DRR of zero or greater were used to determine
the ERR ranking.

For all evaluation indices, no specific team was able to hold
the topmost position for a long time. The participants switched
their positions by raising their scores, and of course, the over-
all average score also increased during this process. Recall that

all the scores were published on the Web in real time, allowing
each participant to gauge their relative position with respect to
other participants and encouraging operational improvement
through competition. The change in the participants’ ranking
order was intense in the offline period, but not so much in the
online period. There may be three reasons for this. First, vari-
ous operational improvements had already been tried and the
participants were running out of new methods to test. Second,
some of the lower-ranked teams decided that it was too diffi-
cult to surpass thehigher-ranked teamsand left the competition.
In fact, some of the teams with lower scores are depicted by
horizontal lines, denoting almost no change in their scores in
the second half period of the competition. Third, many partici-
pants found it difficult to control the online processwith BACnet.
Seventeen responseswere obtained from the questionnaire sur-
vey conducted after the championship. According to this survey,
only 3 teams achieved online control with BACnet. Two teams
failed to establish a VPN connection with the server, and the
remaining 12 teams never aimed for online control.

Along these lines, a summary of the operational results of
all the participants (monthly energy consumption and dissatis-
faction rate of occupants) was also published on the website.
According to interviews with the top teams after the champi-
onship, some participants used these summaries as benchmarks
for improving their operations. The above-mentioned strate-
gies implemented by the participants during the championship
provided hints for improving the operation of real buildings.
In general, no clear comparisons can be made among building
operations. Therefore, even if a building is poorly operated, it is
unlikely to cause much trouble, but conversely, even if a build-
ing operator were to be efficient at his task, he/she will rarely be
praised.Of course, ethical operators always seek to improve their
operation methods based on their personal will to do their jobs
well, but their efforts are largely unrecognized. If we can reveal
the results of the tuning effects made by the building operators
and allow a fair comparison with similar efforts by other such
practitioners, theywill be encouraged to attempt further tuning.
A system that enables such comparisons could be built using an
emulator. We discuss this aspect in Section 5.

The final scores of the top 10 teams in terms of ERR, DRR, and
E2R2 are listed in Tables 2–5, respectively. In each case, the first-
ranked team is different. As energy savings and comfort share
a trade-off relationship, obtaining a higher ERR or DRR ranking
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Figure 10. Transition of score distribution (offline period).

Figure 11. Final score distribution.
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Figure 12. Changes in ERR (energy-saving performance) by team over the course of the championship.

Figure 13. Changes in DRR (comfort performance) by team over the course of the championship.

requires different operations. This can be evidenced by the fact
that the first-ranked team in the ERR listing has a low DRR, while
the first-ranked team in the DRR listing has a low ERR. Inter-
views with the top scorers for each ranking revealed that they
performed special operations with an emphasis on one of the
indicators.

The championship evaluated only energy savings and
comfort. However, it is necessary to understand that real
situations involve more complex problems, with additional
trade-off indicators, which require a balance among aspects
such as investment profitability, robustness, and CO2

performance.

4.3. Score distribution

The distribution of the 339 trial scores is shown in Figures 15 and
16. The figures show that the ERR andDRR arewidely distributed
over both the positive and the negative ranges (with the DRR
scores more widely distributed than the ERR scores), indicating
a wide range of possibilities for operational improvement.

The standard deviations of ERR and DRR are approximately
6 and 25%, respectively. The performance of the hardware
remained constant; thus, these distributionsmust have occurred
due to operational differences. It was expected that the partici-
pants would not limit themselves to performing all calculations
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Figure 14. Changes in E2R2 (comprehensive score) by team over the course of the championship.

Table 3. Final scores of the top 10 teams (ERR).

Rank Team No. Affiliation ERR [%] DRR [%] E2R2 [bps]

1 20 Kanden facilities 15.17 1.31 19.99
2 17 Kanden energy

solution
14.85 13.68 203.24

3 15 Sanko air conditioning 14.19 15.29 216.98
4 03 Nihon Sekkei 13.20 13.78 182.07
5 13 Shibaura Institute of

Technology
12.69 11.065 147.97

6 02 Hokkaido University 12.68 9.89 125.52
7 12 Kyushu University,

Sumiyoshi
Laboratory

12.00 14.47 173.84

8 25 Anonymous 10.70 1.45 15.58
9 08 Waseda University,

Tanabe Laboratory
10.56 6.71 70.95

10 19 Anonymous 9.63 11.72 112.96

Table 4. Final scores of the top 10 teams (DRR).

Rank Team No. Affiliation ERR [%] DRR [%] E2R2 [bps]

1 08 Kogakuin University −20.42 26.11 0.00
2 02 Hokkaido University −12.20 23.86 0.00
3 15 Sanko Air Conditioning 10.94 21.79 238.49
4 13 Shibaura Institute of

Technology
10.07 21.71 218.80

5 17 Kanden Energy Solution 11.18 21.41 239.44
6 27 Anonymous 4.06 20.91 85.05
7 20 Kanden Facilities 2.10 20.45 42.95
8 12 Kyushu University,

Sumiyoshi Laboratory
10.44 20.05 209.35

9 33 Kansai Electric Power 7.73 17.40 134.63
10 09 Tokyo Polytechnic

University
1.19 17.35 20.81

on the server and that theywould additionally test operations on
their local PCs. If these calculations were included in the overall
analysis, the performance variability as a result of the opera-
tionswouldhavebeenevengreater. However, it canbe assumed
that the building manager of an actual building would tend to
perform safe operations that consume more energy to avoid

Table 5. Final scores of the top 10 teams (E2R2).

Rank Team No. Affiliation ERR [%] DRR [%] E2R2 [bps]

1 15 Sanko Air Conditioning 12.15 20.96 254.82
2 17 Kanden Energy Solution 11.18 21.41 239.44
3 13 Shibaura Institute of

Technology
11.05 21.01 232.31

4 12 Kyushu University,
Sumiyoshi Laboratory

10.44 20.05 209.35

5 02 Hokkaido University 10.17 18.17 184.99
6 03 Nihon Sekkei 13.20 13.78 182.07
7 20 Kanden Facilities 8.67 18.96 164.54
8 33 Kansai Electric Power 8.03 17.27 138.79
9 27 Anonymous 7.29 17.27 126.00
10 19 Anonymous 9.63 11.72 112.97

complaints from the inhabitants and, therefore, that the actual
centers of distribution would be to the left and right for ERR and
DRR, respectively.

As the participants in a competition of this type are expected
to be primarily interested in building operations, their abilities
with respect to this task would be expected to be higher than
average. In reality, however, certain buildings must be operated
with insufficient funds and staffing, resulting in a wider real-
world distribution of operational results than those achieved in
this championship.

4.4. Points to be improved

The performance evaluation revealed two points that deserve
reflection.

The first point regards the range over which the primary
energy use was evaluated. Figure 17 shows the energy con-
sumption rate during the default operation, which equated to
an annual energy consumption of 1109 MJ/(m2·yr). While calcu-
lating ERR in Equation (3), this value was used as the standard
energy consumption, ER. The outlet and lighting energy con-
sumption were included in this calculation to obtain a complete
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Figure 15. Frequency distribution of ERR and DRR.

Figure 16. Frequency distribution of E2R2.

Figure 17. Energy consumption rate under default operation.

picture of the overall primary energy consumption by the build-
ing. This resulted in a decrease in the overall ratio of energy
consumptionby theHVACcomponent to the total consumption.
As the HVAC system was the main controllable equipment in
the championship, the range over which ERR could change was

therefore reduced. For example, as the energy consumption by
HVACwas only approximately 35% of the total, halving this con-
sumption would only reduce ERR to 35%× 0.5 = 17.5%. Thus,
the range of ERR was very limited relative to that of DRR, mak-
ing the game less interesting in terms of developing a trade-off



404 E. TOGASHI ET AL.

Figure 18. Primary HVAC energy consumption by team.

Figure 19. Primary HVAC energy consumption rate by team.

strategy. However, as blind control affects the energy consump-
tion of both lighting and theHVAC system, lighting energy could
not simply be ignored. Only the energy consumption of perime-
ter illumination should be summarized to evaluate the score. As
the energy consumption of the outlets is a fixed value that could
not be controlled, it should be neglected when evaluating the
score.

Another point of reflection involves the method used for
expressing uncertainty. Because the same randomnumber seed
was used during the offline periods, all the trials were performed
under exactly the same weather and occupant behavior condi-
tions. During the online periods, the control program could be
complicated to an arbitrary extent, making it possible to control
the weather conditions to make them fully predictable instead
of (realistically) uncertain. As this would be a control overfitting
to a specific condition – which is not preferable – this con-
trol was penalized during the online period by changing the
random number seed each time a server-side calculation was
performed. However, because theweather conditions and occu-
pant behavior were varied with each calculation trial, it became
difficult to compare the absolute values of energy consumption

and dissatisfaction rate. As there were few participants who
changed the online control used in the championship, it was
preferable to fix the random number seed with an emphasis on
the inter-compatibility of the calculation results.

In the following sections, webriefly compare the participants’
results. For a more detailed analysis, the operating data (hourly
and by-minute) of all the participants can be accessed online
(www.wccbo.org).

4.5. Comparison of energy consumption

Figures 18 and 19 and Table 6 show the HVAC energy consump-
tion and consumption rate of each team under the operational
conditions at which their respective E2R2 ratings obtained the
maximum value.

Two major groups are apparent: teams that prioritized the
air heat-source heat pump and teams that prioritized the direct
absorption chiller/heater. The top three teams – Nos. 3, 17, and
15 – did not operate any direct absorption chiller/heater at all,
and instead produced all the heat by using an air source heat
pump. As there were no tenants on the third floor of the office

http://www.wccbo.org
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Table 6. Primary HVAC energy consumption obtained by each team [MJ/(m2·yr)].
No. AHP GAR AHP auxiliary GAR auxiliary Water tank pump Secondary pump AHU/FCU

Ref. 73.2 143.6 8.6 28.8 11.1 13.2 127.3
01 128.7 23.5 18.1 2.5 11.6 14.1 150.2
02 149.3 34.8 15.3 3.1 11.7 14.3 184.8
03 130.8 0.0 13.7 0.0 8.2 11.9 173.5
04 128.7 23.5 18.1 2.5 11.6 14.1 150.2
05 128.7 23.5 18.1 2.5 11.6 14.1 150.2
06 128.7 23.5 18.1 2.5 11.6 14.1 150.2
07 75.2 129.5 7.5 26.2 10.9 12.9 117.1
08 140.0 0.0 21.9 0.0 6.3 16.8 176.2
09 121.4 25.3 17.7 3.1 12.4 13.9 139.8
10 75.9 160.8 8.7 31.4 11.3 14.8 150.6
12 124.1 2.4 14.9 0.3 12.9 11.5 132.1
13 120.2 0.0 15.4 0.0 13.3 13.2 136.9
14 103.3 21.8 15.1 2.3 16.5 9.5 155.3
15 121.1 0.0 14.7 0.0 14.0 7.3 130.3
16 138.5 7.6 19.9 0.6 3.6 9.7 160.5
17 130.6 0.0 19.9 0.0 4.8 6.3 117.2
18 115.2 27.2 15.8 2.2 13.1 13.3 148.2
19 117.8 0.0 14.3 0.0 14.4 9.0 145.0
20 124.2 0.0 15.9 0.0 10.1 13.0 146.9
21 75.2 107.2 8.4 17.4 10.5 7.9 108.8
22 73.2 121.2 8.6 20.9 11.1 12.3 115.3
23 71.5 141.4 8.6 27.6 10.4 13.3 128.5
24 118.6 18.0 14.9 2.0 10.8 12.3 142.8
25 108.0 9.1 14.9 1.5 10.3 12.3 138.1
26 111.2 17.2 17.5 1.8 7.5 14.3 163.2
27 143.5 0.0 19.1 0.0 11.4 9.2 147.9
28 119.9 19.8 18.3 1.2 4.5 14.5 139.0
29 75.5 153.9 8.8 28.6 11.4 14.3 148.8
30 119.0 24.3 17.3 2.7 14.1 13.6 145.8
31 152.0 38.1 17.6 3.5 10.0 14.0 171.9
32 127.6 25.0 16.9 2.2 10.8 13.9 149.0
33 130.5 0.0 15.8 0.0 7.8 9.1 154.8
34 73.2 143.6 8.6 28.8 11.1 13.2 127.3

GA: Gas absorption chiller, AHP: Air heat source heat pump, AHU/FCU: Air handling unit and fan coil unit.

Figure 20. Monthly dissatisfaction percentage by team at maximum E2R2.

building to be optimized, and the schedule of activities was
different for each tenant, no design peak load occurred.

The energy consumption of the heat charge/release pump
of the water heat storage tank varied considerably by team. It
seems likely that the team with the highest score extended the
operating time of the air source heat pump by changing the
schedule using the water heat storage tank.

While many teams increased the energy consumption of the
air handling unit to above the baseline, team No. 17 reduced
it. An interview with this team revealed that they reduced the
operating time of the air handling units in accordance with the
activities of the respective tenants.

Team Nos. 15 and 17 succeeded in halving the energy con-
sumption of the secondary pump. Among the top performing
teams, they were the only ones who adjusted the parameters of
the formula that estimated the required differential pressure of
the secondary pump.

4.6. Comparison of thermal comfort

Figure 20 shows the monthly dissatisfaction rate (as a percent-
age) obtained by each team at their respective maximum E2R2
value. In the winter, the dissatisfaction percentage is much
higher and the variation among the teams is greater than in
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Figure 21. Total number of dissatisfied occupants by team.

Figure 22. Monthly dissatisfaction percentage by team.

the summer. One reason for this is that upon starting up in the
morning, the thermal environment is more extreme during the
winter because the building structure becomes very cold during
the night. Furthermore, the heating mode applied during win-
ter mornings must be switched to a cooling mode during the
afternoon, but it is difficult to set the timing for thismode switch-
ing. Teams 21 and 22 tried to spend the warm mid-season (Apr.
andNov.)withonly ventilationandnoair conditioning; however,
the dissatisfaction percentage became extremely high, and they
failed the task (Figure 21).

Figure 22 shows the monthly dissatisfaction percentage
obtainedbyeach team. Thevariationwas thegreatest inNovem-
ber, followed by April, suggesting that the quality of these mid-
season operations had a significant effect on the final scores. The
highest-scoring teams – Nos. 12, 15, and 17 – had clearly lower
dissatisfaction percentages than the other teams during winter
months such as January and February.

5. Conclusion

In this paper, we reported the results of a championship inwhich
teams competed to optimize building operation performance
using an emulator.

A review of the history of similar open championships reveals
that they promote the development of new technologies and
skills through competition. During our championship, it was evi-
dent that a number of participants improved their operational
performance competitively based on the monitoring of other
teams’ scores. Current building operation processes are not
actually competitive, and the operational management process
generally differs from one building to another. To improve oper-
ations by introducing the element of competition, it is necessary
to compare the performance in some concrete manner. Such
comparison has been conventionally difficult because buildings
are generally standalone entities; however, the development of
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simulation technologies is making it possible to operate build-
ings virtually. With the spread of building information modeling
in recent years, the concept of ‘digital twinning,’ wherein a build-
ing that behaves exactly like a real building is constructed in
cyberspace, has been increasingly studied (Lydon et al. 2019;
Kaewunruen, Rungskunroch, andWelsh 2018). In the future, dig-
ital twins should be designed with the purpose of virtualizing
building operation. If virtual operation becomes possible with
a digital twin, as described below, there exists a possibility that
buildingoperation services canbe traded in an ideal competitive
market, or free market.

Allowing for the control of such systems using BACnet com-
munication and VPN, as was done in our championship, would
enable building operations that are not restricted by location.
Currently, building operations are usually carried out contin-
uously by specific building managers, but the use of systems
such as that in our championship would make it possible to
replace operators dynamically. In other words, it would enable
an approach wherein a number of operator candidates paral-
lelly perform operations on a virtual building with a network
of operators that achieved the best empirical scores with an
actual building. In digital twinning, a virtual building that shows
exactly the same response as a real building exists in parallel on
the network. In fact, because these buildings can be replicated
innumerable times, it may be better to call them ‘digital clones’
rather thandigital twins.When switchingoperators, asdescribed
above, the compensation for operating the building could be
paid according to the connection time to the real-world build-
ing. If such a mechanism could be established, building opera-
tion services could be traded in a completely competitive mar-
ket. As operators who can propose a good building operation
strategy at a lower cost are more competitive, service providers
will begin to develop software that automatically provides supe-
rior operational strategies at lowcost basedonmachine learning
and other techniques. An emulator can express uncertainties in
buildingparameters,which is useful to check theperformanceof
machine learning. Emulators can also be replicated as needed,
making them invaluable as models for reinforcement learning.
Meanwhile, from the demand side perspective, owners who pay
higher compensation can secure the services of more skilled
building operators.

For the purposes of this championship, the authors devel-
oped all the models from scratch. However, if the service
described above is to be realized, it is necessary to further
improve theability of themodels tomimic real-world conditions.
To do this, the emulator should be divided into components,
and the device model should be provided by the manufacturer.
In this case, model-based development (e.g. Modelica) would
be a powerful tool (IEA 2017; Wimmer et al. 2015; Kim et al.
2015; Pinheiro et al. 2018). Providing equipment models, how-
ever, constitutes a new burden for manufacturers. Nonetheless,
more information will be available on how these models should
be used in the operational stage, undoubtedly driving techno-
logical progress.

Our championship was also useful in that it clarified the
potential value of building operations. Maintaining a build-
ing in a comfortable manner while saving energy requires
both good hardware and proper operational procedures. How-
ever, because buildings are single-product installations, it is

conventionally impossible to know exactly what may happen
if one were operated in a manner that differed from reality.
The results of this championship revealed the wide differences
in operational effectiveness, even among practitioners who are
more competent and better trained than the general popula-
tion.We also found that the participants tended to improve their
scores by repeatingoperational procedures. It shouldbeempha-
sized that the observed differences in scores were purely the
result of operational factors, as the HVAC hardware was exactly
the same for all the participants. Repeating competitions such
as ours will allow amore quantitative evaluation of the potential
value of operational ability, which in turnwill contribute tomaxi-
mizing thevalueofbuildingsover their entire life cycle, including
the operational stage.

As mentioned already, all the operational data recorded by
each participant in this championship are available on the web-
site. Also, since all the emulator systems (including the source
code) can be downloaded, interested readers and practitioners
are welcome to attempt virtual operations and evaluate their
tuning abilities. Since the source code was released under the
General Public License, our emulator is free and open to modi-
fication, and we hope that improved versions will be developed
in the future.

Acknowledgements
This research was conducted as part of the activities of the ‘Air Condition-
ing Equipment Committee’ at ‘The Society of Heating, Air-Conditioning and
Sanitary Engineers of Japan.’ We would like to thank all the participants of
the championship.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work was supported by JSPS KAKENHI [grant numbers JP 16K18198 and
JP 18K04462].

References
Bushby, S. T., N. Castro, M. A. Galler, and C. Park. 2001. “Using the Virtual

Cybernetic Building Testbed and FDD Test Shell for FDD Tool Develop-
ment.” National Institute of Standard and Technology: NISTIR 6818.

Bushby, S. T., N. M. Ferretti, M. A. Galler, and C. Park. 2010. “The Virtual Cyber-
netic Building Testbed – A Building Emulator.” ASHRAE Transactions 116
(1): 37–44.

Chau, C. K., T. M. Leung, and W. Y. Ng. 2015. “A Review on Life
Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Car-
bon Emissions Assessment on Buildings.” Applied Energy 143: 395–413.
doi:10.1016/j.apenergy.2015.01.023.

Chonan, Y., K. Nishida, and T. Matsumoto. 1996. “A Bayesian Non-Linear
Regression with Multiple Hyperparameters on the ASHRAE II Time Series
Data.” ASHRAE Transactions 102 (2): 405–411.

CIBSE (The Chartered Institution of Building Services Engineers). 2015. Build-
ing PerformanceModelling CIBSE AM 11. 2nd ed.

Dodier, R., and G. Henze. 1996. “A Statistical Analysis of Neural Networks
as Applied to Building Energy Prediction.” In Proceedings of the 1996
ASME/JSME International Solar Energy Conference, 495–506.

Fanger, P.O. 1970.ThermalComfort– analysisandApplications inEnvironmen-
tal Engineering. Copenhagen: Danish Technical Press.

Feuston, B. P., and J. H. Thurtell. 1994. “Generalized Non-Linear Regressions
with Ensemble of Neural Nets: The Great Energy Predictor Shootout.”
ASHRAE Transactions 100 (2): 1075–1080.

https://doi.org/10.1016/j.apenergy.2015.01.023


408 E. TOGASHI ET AL.

Haberl, J., and S. Thamilseran. 1996. “Predicting Hourly Building Energy
Use: The Great Energy Predictor Shootout II: Measuring Retrofit Sav-
ings – Overview and Discussion of Results.” ASHRAE Transactions 102 (2):
419–435.

IEA (International Energy Agency). 1997. “Energy Conservation in Buildings
and Community Systems Programme (ECBCS).” Summary of IEA Annexes
16 and 17, Annex 17 – Building Energy Management Systems (BEMS) – Eval-
uation and Emulation Techniques.

IEA (International Energy Agency). 1999. Energy Conservation in Buildings
and Community Systems Programme (ECBCS). Annex 25 –Real Time Sim-
ulation of HVAC Systems for Building Optimization, Fault Detection and
Diagnostics.

IEA (International Energy Agency). 2008.Worldwide Trends in Energy Use and
Efficiency. Connecticut: Turpin Distribution.

IEA (International Energy Agency). 2017. Energy in Buildings and Commu-
nities Programme (ECB). IEA Annexes 60 Final Report – New Generation
Computational Tools for Building & Community Energy Systems.

Iijima, J., K. Takagi, R. Takeuchi, andT.Matsumoto. 1994. “APiecewise – Linear
Regressionon theASHRAETimeSeriesData.”ASHRAETransactions100 (2):
1088–1095.

Jang, K.-J., E. Bartlett, and R. Nelson. 1996. “The Great Energy Predictor
Shootout II: Measuring Retrofit Energy Savings Using Autoassociative
Neural Networks.” ASHRAE Transactions 102 (2): 412–418.

Kaewunruen, S., P. Rungskunroch, and J. Welsh. 2018. “A Digital-Twin Evalu-
ation of Net Zero Energy Building for Existing Buildings.” Sustainability 11:
159. doi:10.3390/su11010159.

Katipamula, S. 1996. “The Great Energy Predictor Shootout II: Modeling
Energy use in Large Commercial Buildings.” ASHRAE Transactions 102 (2):
397–404.

Kawashima, M. 1994. “Artificial Neural Network Backpropagation Model
with Three-Phase Annealing Developed for the Building Energy Predictor
Shootout.” ASHRAE Transactions 100 (2): 1096–1103.

Khoury, J., Z. Alameddine, and P. Hollmuller. 2017. “Understanding and
Bridging the Energy Performance gap in Building Retrofit.” Energy Proce-
dia 122: 217–222. doi:10.1016/j.egypro.2017.07.348.

Kim, J. B.,W. Jeong,M. J. Clayton, J. S. Haberl, andW. Yan. 2015. “Developing a
Physical BIM Library for Building Thermal Energy Simulation.” Automation
in Construction 50: 16–28. doi:10.1016/j.autcon.2014.10.011.

Kreider, J. F., and J. S. and Haberl. 1994. “Predicting Hourly Building Energy
Use: The Great Energy Predictor Shootout – Overview and Discussion of
Results.” ASHRAE Transactions 100 (2): 1104–1118.

Lebrun, J., and S. W. Wang. 1993. “Evaluation and Emulation of Building
Energy Management Systems – Synthesis Report, IEA Annex 17 Final
Report.” Belgium: University of Liege.

Lydon, G. P., S. Caranovic, I. Hischier, and A. Schlueter. 2019. “Coupled Sim-
ulation of Thermally Active Building Systems to Support a Digital Twin.”
Energy & Buildings. doi:10.1016/j.enbuild.2019.07.015.

MacKay, D. 1994. “Bayesian Non-Linear Modeling for the Energy Predictor
Competition.” ASHRAE Transactions 100 (2): 1053–1062.

Mohammed, T., R. Greenough, S. Taylor, L. Ozawa-Meida, and A. Acquaye.
2013. “Operational vs. Embodied Emissions in Buildings – a Review of
Current Trends.” Energy and Buildings 66: 232–245. doi:10.1016/j.enbuild.
2013.07.026.

Nguyen, A., S. Reiter, and P. Rigo. 2014. “A Review on Simulation-Based Opti-
mization Methods Applied to Building Performance Analysis.” Applied
Energy 113: 1043–1058. doi:10.1016/j.apenergy.2013.08.061.

Ohlsson,M., C. Peterson, H. Pi, T. Rognvaldsson, and B. Soderberg. 1994. “Pre-
dictingUtility LoadswithArtificialNeuralNetworks – Methods andResults
From ‘The Great Energy Predictor Shootout.’.” ASHRAE Transactions 100
(2): 1063–1074.

Ono, E., S. Ito, and H. Yoshida. 2017. “Development of Test Procedure
for the Evaluation of Building Energy Simulation Tools.” Proceedings of
the International Building Performance Simulation Association, 380–388.
doi:10.26868/25222708.2017.10z.

Pinheiro, S., R. Wimmer, J. O’Donnell, S. Muhic, V. Bazjanac, T. Maile,
J. Frisch, and C. Treeck. 2018. “MVD Based Information Exchange
Between BIM and Building Energy Performance Simulation.”
Automation in Construction 90: 91–103. doi:10.1016/j.autcon.2018.
02.009.

Rouchier, S. 2018. “Solving InverseProblems inBuildingPhysics: AnOverview
of Guidelines for a Careful and Optimal use of Data.” Energy & Buildings
166: 178–195. doi:10.1016/j.enbuild.2018.02.009.

Rumelhart, D. E., G. E. Hinton, and R. J. Williams. 1986. “Learning Rep-
resentations by Back-Propagating Errors.” Nature 323 (6088): 533–536.
doi:10.1038/323533a0.

Sartori, I., and A. G. Hestnes. 2007. “Energy Use in the Life Cycle of Con-
ventional and Low-Energy Buildings.” Energy and Buildings 39: 249–257.
doi:10.1016/j.enbuild.2006.07.001.

SHASE (Society of Heating, Air-Conditioning and Sanitary Engineers of
Japan). 1998. “Research on Fault Diagnosis andOptimization of Heat Stor-
ageHVAC System (in Japanese).” Final Report of CommitteeofHeat Storage
Optimization.

SHASE (Society of Heating, Air-Conditioning and Sanitary Engineers of
Japan). 2016. “SHASE-G 1008-2016, Guideline of Test Procedure for the
Evaluation of Building Energy Simulation Tool.”

Stevenson,W. J. 1994. “PredictingBuilding EnergyParametersUsingArtificial
Neural Nets.” ASHRAE Transactions 100 (2): 1081–1087.

Togashi, E., andM.Miyata. 2019. “Development of Building Thermal Environ-
ment Emulator to Evaluate the Performance of the HVAC System Opera-
tion.” Journal of Building Performance Simulation. doi:10.1080/19401493.
2019.1601259.

Togashi, E., and S. Tanabe. 2009. “Methodology for Developing Heat-load
Calculating Class Library with Immutable Interface.” Technical Papers
of the Annual Meeting of the Society of Heating, Air-conditioning and
Sanitary Engineers of Japan, 1995–1998. doi:10.18948/shasetaikai.2009.
3.0_1995.

Vaezi-Nejad, H., E. Hutter, P. Haves, A. L. Dexter, G. Kelly, P. Nusgens, and
S. W. Wang. 1991. “The Use of Building Emulators to Evaluate the Per-
formance of Building Energy Management Systems.” In Proceedings of
Building Simulation 1991 Conference, 209–213.

Wilde, P. 2014. “The Gap Between Predicted and Measured Energy Per-
formance of Buildings: A Framework for Investigation.” Automation in
Construction 41: 40–49. doi:10.1016/j.autcon.2014.02.009.

Wimmer, R., J. Cao, P. Remmen, and T. Maile. 2015. “Implementation of
Advanced BIM-BasedMapping Rules for Automated Conversions toMod-
elica.” Proceedings of BS2015: 14th Conference of International Building
Performance Simulation Association, 7–9.

Zhang, Y., Y. Zhang, W. Shi, R. Shang, R. Cheng, and X. Wang. 2015. “A
new Approach, Based on the Inverse Problem and Variation Method,
for Solving Building Energy and Environment Problems: Preliminary
Study and Illustrative Examples.” Building and Environment 91: 204–218.
doi:10.1016/j.buildenv.2015.02.016.

https://doi.org/10.3390/su11010159
https://doi.org/10.1016/j.egypro.2017.07.348
https://doi.org/10.1016/j.autcon.2014.10.011
https://doi.org/10.1016/j.enbuild.2019.07.015
https://doi.org/10.1016/j.enbuild.2013.07.026
https://doi.org/10.1016/j.apenergy.2013.08.061
https://doi.org/10.26868/25222708.2017.10z
https://doi.org/10.1016/j.autcon.2018.02.009
https://doi.org/10.1016/j.enbuild.2018.02.009
https://doi.org/10.1038/323533a0
https://doi.org/10.1016/j.enbuild.2006.07.001
https://doi.org/10.1080/19401493.2019.1601259
https://doi.org/10.18948/shasetaikai.2009.3.0_1995
https://doi.org/10.1016/j.autcon.2014.02.009
https://doi.org/10.1016/j.buildenv.2015.02.016

	1. Introduction
	2. References for our competition
	2.1. The Great energy Predictor Shootout
	2.2. The Great energy Predictor Shootout II
	2.3. Heat load prediction Public competition
	2.4. Championship policies based on precedents

	3. Preparations for the world championship of Cybernetic building optimization
	3.1. Determination of evaluation criteria
	3.2. Determination of schedule
	3.3. Information of the participants

	4. Results of the world championship of Cybernetic building optimization
	4.1. Relationship between the number of calculations and scores
	4.2. Score changes and final results
	4.3. Score distribution
	4.4. Points to be improved
	4.5. Comparison of energy consumption
	4.6. Comparison of thermal comfort

	5. Conclusion
	Acknowledgements
	Disclosure statement
	Funding
	References

