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Demonstrating the economic rationality of investments in energy efficiency is a necessary step in reducing the energy con-
sumption of buildings. Generally, financial instruments are evaluated according to both the return on investment and the
risk. However, many previous studies of energy efficiency investments in buildings are based on deterministic scenarios and
do not evaluate the risk levels of these investments. Therefore, in this study, we clarify the risk involved in an energy-saving
investment by calculating the probability distribution of the energy reduction and evaluating the result using financial engi-
neering methods. We first develop a stochastic model of various conditions that affect the energy consumption of a building.
These conditions include weather processes, office worker behavior, tenant characteristics, and tenant replacements. Next,
we construct a prediction model of a building’s energy consumption, and we use our stochastic model to create the bound-
ary conditions of this prediction model. By repeatedly performing energy consumption predictions using the Monte Carlo
method, we can obtain the probability distribution for building energy consumption. Finally, given this probability distri-
bution, we evaluate energy efficiency investments using financial engineering methods. Based on the discounted cash flow
distribution, we calculate the risk premium of each energy efficiency investment, and, based on the variance and covariance
matrix of the internal rate of return of each energy efficiency investment, we find the optimal investment ratio.

Keywords: risk analysis; energy efficiency investment; Monte Carlo method; HVAC; portfolio theory

1. Introduction
The household and services sectors, both of which
are related to buildings, contribute about 40% of the
world’s total final energy consumption (International
Energy Agency 2008). Thus, improving the energy effi-
ciency of buildings has the potential to greatly contribute
to the reduction of world energy consumption. Mak-
ing such improvements, however, requires investments,
and investors will only make these investments if they
improve the value of real estate. There are three traditional
approaches to real estate valuation: the “sales compar-
ison approach,” the “income approach,” and the “cost
approach” (Appraisal Institute 2013; MLIT 2014). There-
fore, it is quite natural to use these approaches when
considering the influence of energy efficient investments
on real estate value. Yamagata et al. (2011) review inter-
national studies of the effect of green building on office
rents or housing prices and report that these studies can be
categorized as validating one of two hypotheses. The first
hypothesis is that market participants prefer real estate with
sustainability. These studies focus on how green build-
ings are traded by market participants and are closely
related to the sales comparison approach to real estate
appraisal. The second hypothesis is that expectations of
reduced energy consumption are reflected in real estate
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prices. These studies aim to clarify the effect of energy
conservation on real estate income streams and are closely
related to the income approach.

Several researchers use a sales comparison approach to
examine whether the benefits of energy efficiency improve-
ments to buildings are worth the cost of investment. Some
investigate the relationship between environmental certifi-
cation and real estate prices (Chegut, Eichholtz, and Kok
2014; Eichholtz, Kok, and Quigley 2010, 2013; Fuerst
and McAllister 2011a, 2011b; Miller, Spivey, and Florance
2008; Wiley, Benefield, and Johnson 2010). Eichholtz,
Kok, and Quigley (2010, 2013) analyze the influence of
Leadership in Environmental Energy and Design (LEED)
and Energy Star labeling using a dataset of rented (21,000
cases) and sold (6000 cases) buildings in the US market-
place. Based on hedonic analysis, they show that an office
building registered with LEED or Energy Star rents for
a 3% premium on average and sells for a premium of
about 13%. Fuerst and McAllister (2011a, 2011b), Miller,
Spivey, and Florance (2008), Wiley, Benefield, and John-
son (2010), and Chegut, Eichholtz, and Kok (2014) also
analyze properties traded on the market in a similar way
and quantify the impacts of LEED, Energy Star, and the
Building Research Establishment Environmental Assess-
ment Method on rents and sales prices. These studies use a
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social scientific approach, which is helpful for understand-
ing actual changes in societal preferences.

On the other hand, there is a known gap between
the investment expected based on the theoretical profit
improvement rate reported by various studies and the
energy-saving investment actually observed in the mar-
ket, which is called the “efficiency gap” (see Gillingham
and Palmer (2014) for a comprehensive review). In other
words, investors tend to prefer lower initial investments
over higher monthly rental revenues, and internal invest-
ment rates are often set at levels higher than the cost of
capital. Research has examined the cause of this “effi-
ciency gap,” and some studies argue that the energy-saving
investment market is imperfect (DeCanio 1993; Sanstad
and Howarth 1994; Schleich 2009).

Specifically, DeCanio (1993) argues that energy-saving
investment faces a principal-agent problem. In many cor-
porations, managers tend to be rotated through different
jobs every few years. They prefer projects with short
payback periods, even if the projects are inferior to energy-
saving investments in the long term, because the quick
returns on such projects enhance these managers’ reputa-
tions. Sanstad and Howarth (1994) and Schleich (2009)
argue that imperfect or asymmetric information causes
market failures. For example, the measurement level of
a current facility may be insufficient, and many corpo-
rations do not know how much energy their facilities
are consuming or current energy consumption patterns.
Moreover, these corporations may be unfamiliar with the
latest energy efficiency investments available and may not
know the current energy consumption levels of other facil-
ities. Sanstad and Howarth (1994) and Schleich (2009)
also point out that hidden costs cause market failures. In
other words, they argue that corporations do not make
energy efficiency investments because these investments
have additional costs that are hidden to observers but not
to corporations, such as the cost of obtaining information
to determine whether to make an energy efficiency invest-
ment, the cost of an inferior indoor environment, the cost
required for maintaining energy efficient equipment, and so
on.

The risk of future uncertainty is one of the main causes
of market failure that may explain the “efficiency gap.”
This study aims to quantitatively evaluate this risk. Many
previous studies have also focused on this risk (Abadie,
Chamorro, and González-Eguino 2013; Ansar and Sparks
2009; Cano et al. 2014; Cano, Moguerza, and Alonso-
Ayuso 2016; Jackson 2008, 2010; Szumilo and Fuerst
2017; Tuominen and Seppänen 2017). Szumilo and Fuerst
(2017) argue that introducing sustainability to a real prop-
erty offers two types of benefits to its financial perfor-
mance. The first benefit is the direct financial benefit due
to reduced utility costs, which should not attract additional
risk. The second is the uncertain benefit of evoking addi-
tional tenant demand. It is uncertain whether this benefit
is obtained, as tenants’ attraction to sustainability at the

time of signing the lease is stochastic. Empirical tests
performed on a large panel dataset from the US show
that energy efficient properties attract higher demand but
that this demand depends on market conditions, increasing
exposure to market risk.

Jackson (2008, 2010) points out that traditional meth-
ods of evaluating energy efficiency investments, such as
requiring low paybacks or high internal rates of return
(IRR), tend to exclude many profitable investments. This
issue arises because the aim of these methods is risk
avoidance rather than risk management. Jackson (2008)
proposed the concept of the energy budget at risk (EBaR)
to apply investment analysis to energy-related decisions in
a manner that is consistent with financial investment anal-
ysis. EBaR is a risk management tool similar to value at
risk, which is the most widely recognized such tool in the
finance industry. It attempts to quantify the result of an
energy efficiency investment as a probability distribution
to provide information on the return from investment with
the level of uncertainty.

Tuominen and Seppänen (2017) discuss the risk of
unexpected utility cost hikes. Their study presents a
method for calculating the value of the utility cost risk
reduction to a consumer that can be achieved through
energy efficiency investments. The value of reducing the
utility cost risk is evaluated using a variation of the Black–
Scholes model. Tuominen and Seppänen (2017) argue that
this often-overlooked benefit of energy efficiency invest-
ments merits more consideration in future studies.

Cano et al. (2014) and Cano, Moguerza, and Alonso-
Ayuso (2016) study the decision making processes for
energy efficiency investments in buildings that are affected
by uncertainties. Their study introduces a scenario tree
model to represent various stochastic events and the invest-
ment decisions (installation, expansion, and renovation)
for the events. By repeating the calculation with stochasti-
cally fluctuating utility costs, the distribution of investment
costs is generated.

In reality, various kinds of energy efficiency equip-
ment exist in buildings, and they exhibit different stochastic
trends. For a big business decision, it is sufficient to cal-
culate the total probabilistic trend of energy efficiency
investments caused by combining various types of energy
efficiency equipment. For this reason, all of the studies
of risk described above consider the probabilistic trend
of energy efficiency investment for an entire building and
do not calculate the behavior of individual energy-saving
equipment. However, in the design phase, when it is nec-
essary to consider individual pieces of energy efficiency
equipment, such risk assessments are too simple. It is nec-
essary to understand the stochastic energy efficiency trend
for each piece of equipment rather than for the entire
building. Doing so helps to determine whether or not to
introduce individual pieces of energy efficiency equipment,
and, if many pieces of energy efficiency equipment are
to be introduced, we can decide which one to prioritize.
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Therefore, in this study, the uncertainty of energy effi-
ciency investment efficacy is not expressed as a single
simple probability distribution but is calculated based on
a detailed physical model incorporating the Monte Carlo
method. Then, based on the probabilistic trends for individ-
ual pieces of energy efficiency equipment, we use financial
engineering methods to estimate the risk premium and
solve the optimal investment allocation problem.

The remainder of this paper is structured as follows.
In section 2, “Development of stochastic energy consump-
tion prediction model,” various conditions that affect a
building’s energy consumption are expressed as stochas-
tic models. Specifically, we introduce stochastic models
for weather processes, office worker behavior, tenant char-
acteristics, and tenant replacements. Then, in section 3,
“Stochastic energy consumption predictions,” we construct
a prediction model of a building’s energy consumption.
The probabilistic model developed in section 2 is used to
create the boundary conditions of this energy consumption
prediction model. By repeatedly calculating the predicted
energy consumption using the Monte Carlo method, we
obtain a probability distribution of a building’s energy
consumption. In section 4, “Evaluation with financial
engineering methods,” we use the probability distribu-
tion obtained in section 3 to evaluate energy efficiency
investments according to financial engineering methods.
We calculate the risk premium of each energy efficiency
investment using the distribution of the discounted cash
flow (DCF), and we determine the optimal investment ratio
based on the variance and covariance matrix of the IRR
of each energy efficiency investment. Finally, section 5,
“Conclusions,” provides a discussion of the results, and
concludes the paper.

2. Development of stochastic energy consumption
prediction model

In this section, we introduce stochastic models of weather
processes, office worker behavior, office tenant charac-
teristics, and tenant replacements. These models will be
integrated into a building energy simulation model in later
sections.

2.1. Stochastic model of weather processes
This model was first developed by Yoshida (1992), and
some improvements to express the influence of the cloud
cover ratio were added by Togashi (2015). See Togashi
(2015) for more details about this model as well as specific
parameters for each expression. The weather conditions
generated by this model are the dry-bulb temperature,
absolute humidity, and atmospheric transmissivity. The
amount of solar radiation is estimated based on the atmo-
spheric transmissivity (Watanabe, Urano, and Hayashi
1983). In this model, as shown in Equation (1), each

weather condition at time n is expressed by four compo-
nents: the trend T, the annual cycle CA, the circadian cycle
CC, and an irregular component I.

Yn = Tn + CAn + CCn + In (1)

The trend component Tn can be used to express a long-term
trend, such as the effect of global warming, but the long-
term trend is assumed to be zero in this study. CAn and CCn
are periodic components, both of which are represented by
a Fourier series, as shown in Equation (2).

Cn = A0

2
+

N∑
i=1

[
Ai cos

(
2π in

T

)
+ Bi sin

(
2π in

T

)]
(2)

Since atmospheric transmissivity is greatly affected
by the amount of clouds, we create separate models for
sunny and cloudy weather. Whether the weather is sunny
or cloudy is modeled as a Markov process, as shown in
Equations (3) and (4).

[
PF ,t+1
PC,t+1

]
=

[
PFF 1 − PCC

1 − PFF PCC

] [
PF ,t
PC,t

]
(3)

P∞,C = (1 − PFF)/(2 − PCC − PFF) (4)

P is the transition probability, and P∞ is the invari-
ant distribution. Equation (2) includes a total of four
sets of parameters A and B (i.e. parameters for the dry-
bulb temperature, the relative humidity, and atmospheric
transmissivity in the cases of sunny and cloudy weather).

The irregular component In is represented by an autore-
gressive model, as shown in Equations (5) to (7).

IATn =
p∑

i=1

aATiIATn−i + N (0, σAT) (5)

IDTn =
p∑

i=1

(aDTiIDTn−i + bDTiIHRn−i) + N (0, σDT) (6)

IHRn =
p∑

i=1

(aHRiIDTn−i + bHRiIHRn−i) + N (0, σHR) (7)

The suffixes DT, HR, and AT represent the dry-bulb
temperature, absolute humidity, and atmospheric transmis-
sivity, respectively. N (0, σ ) is white noise with an average
of zero and variance σ 2. Since the dry-bulb temperature
and the humidity ratio have mutual influences, a vector
autoregressive model is used, as shown in Equations (6)
and (7).

The periodic components (CA and CC) of the dry-bulb
temperature and absolute humidity are corrected by irregu-
lar components of atmospheric transmissivity, as shown in
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Figure 1. Frequency distribution of the calculated values of the model and the measured values (20 years).

Equations (8) to (10). The cfx are correction coefficients.

CAcr = CA × (cfsh · IATcr) (8)

CCcr = CC × (cfswA · IATcr + cfswB) (9)

IATcr = IAT + CCAT − (P∞,F CCATF + P∞,F CCATC) (10)

The calculations in this study use parameters from
Tokyo. Figure 1 shows that the frequency distribution of
the values calculated by the model and that of values mea-
sured over twenty years total are well matched. Figure 2
shows an example of an annual weather simulation result.

2.2. Stochastic model of office worker behavior
Occupant behavior has a great influence on the energy
consumption of a building. Gaetani, Hoes, and Hensen
(2016) compare various occupant behavior models and
conclude that determining the best complexity for occupant
behavior modeling is strongly case specific. The model
used in this study was developed based on a question-
naire survey of 1000 office workers in Japan. We provide
a brief description of the model here, but for more details

about this model as well as specific parameters for each
expression, see Togashi (2017). The model consists of four
small stochastic models to reproduce the daily activities
of office workers. The four probabilistic events are “time
of attendance, lunch break, and leaving work,” “nightly
work,” “holiday work,” and “other temporary leave.” The
parameters of the model are estimated by gender (male and
female), age (divided into five age groups from 20s to 60s),
and job type and form of employment (general employ-
ees, managerial staff, executive officers, civil servants, and
temporary contract employees).

In order to express the time of attendance, lunch break,
and leaving work, the difference between the fixed time
and the actual time, which includes overtime, is modeled.
The “fixed time” mentioned here is the standard arrival
or leaving time contracted between the employer and the
employee. Many Japanese workers tend to arrive earlier
than the fixed time and leave the company later than the
fixed time. Therefore, the probability distribution of the
difference between the fixed time and the actual time is not
symmetrical. For this reason, Johnson’s SU (Equation (11))
and SB (Equation (12)) distributions, which are probabil-
ity distributions with adjustable skewness, are introduced
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Figure 2. Example annual weather simulation results for Tokyo.

in this model.

PSU(x)

=
δ exp

[
−0.5

{
γ + δ ln

(
x−a

b +
√( x−a

b

)2 + 1
)}2

]
√

2π
√

(x − a)2 + b2

(11)

PSB(x) =
δ(b − a) exp

[
−0.5

{
γ + δ ln

( x−a
b−x

)}2
]

√
2π(x − a)(b − x)

(12)

Figure 3 shows an example time difference distribution
calculated using a Johnson distribution, which demon-
strates the trend of early morning arrivals and overtime
work. However, this example shows the overall average,
and the distribution changes slightly according to age and
gender.

Our model of nightly work recognizes that some office
workers may work all night and some may never work at
night. Based on the results of the questionnaire, the fraction
of workers who work overnight can be estimated accord-
ing to the job type and form of employment. For example,
21.5% of managerial staff are likely to work overnight,

Figure 3. Probabilistic density of the time difference based on
the Johnson distribution (weekday).

compared to only 4.5% of temporary contract employees.
Office workers who have the potential to work all night are
expected to do so with a probability of 1.2%.

The model of holiday work was created in the same way
as that of night work. First, office workers who are likely
to work on holidays are identified according to job type
and form of employment. Then, from these workers, we
identify the workers who work on holiday with a certain
probability. We then model the arrival and leaving times
for holiday workers using the Johnson distribution, as
described above. Figure 4 shows the probabilistic density
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Figure 4. Probabilistic density of the time difference based on
the Johnson distribution (holiday).

of this time difference based on a Johnson distribution. On
holidays, workers tend to go to work later and leave work
earlier than on weekdays.

Other temporary leave is modeled by the Markov chain
shown in Equation (13). PI is the probability of being
indoors, and PO is the probability of being outdoors.

[
PI ,t+1
PO,t+1

]
=

[
PII 1 − POI

1 − PIO POO

] [
PI ,t
PO,t

]
(13)

By integrating the above four stochastic models, the
daily behavior of office workers can be calculated. Figure 5
shows an example calculation of the percentage of office
workers who are indoors at each time of day. The long-
term averages converge to the bold lines, but the specific
day-by-day results differ, as indicated by the thin lines.
Figure 6 shows an example calculation of the probability
distribution of the difference between the fixed time (leav-
ing) and the last exit time according to the size (number
of office workers) of the tenant. If the number of office
workers is large, there is a high probability that some office
workers will stay at work late. Therefore, the distribution
shifts to the right. Such a shift is important for energy
efficiency analysis because it greatly affects the operation
of the heating, ventilation, and air conditioning (HVAC)
system.

2.3. Stochastic model of office tenant characteristics
As mentioned in the previous section, the parameters that
affect the behavior of office workers differ according to job

Figure 6. Probabilistic density of the difference between the last
leaving time and fixed time.

type, form of employment, gender, and age. The composi-
tion ratio of the office workers, which incorporates factors
such as gender and age, varies depending on the industry
type of the tenant. Therefore, a stochastic model that esti-
mates this composition ratio for the industry of a building’s
tenant is required.

For this model, we leverage data from the Statistics
Bureau in Japan (SBJ). The SBJ conducts statistical sur-
veys about the labor force every month to elucidate the
current state of employment and unemployment in Japan
(SBJ 2015). These surveys are summarized and published
as the “Labor Force Survey.” By processing the results
of these surveys, we can obtain the employment ratio by
industry, gender, age, employment status, type of employ-
ment, and occupation, as shown in Tables 1 and 2 (Togashi
2018a). We can then generate the proportions of office
workers by age, gender, and so on as discrete distributions
based on the tenant’s industry. The occupied desk area and
the probability of an office worker staying in the room dif-
fer depending on the type of job. In this study, we assume
that these values follow normal distributions. Using the
survey results of Fujii et al. (1980), we can estimate the
parameters, as shown in Table 3.

2.4. Stochastic model of tenant replacement
The model that we use for tenant replacement was origi-
nally developed by Kariya et al. (2005) for the evaluation
of real options. The model expresses two probabilistic
events: the risk of cancelation before the expiration of the

Figure 5. Percentage of office workers staying indoors by time of day.
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Table 1. Employment ratio [%] by industry, gender, employment status, and type of employment and occupation.

Professional and
engineering

workers Clerical workers Sales workers

Industry Gender

Administrative
and managerial

workers
Regular

employee
Part-time
worker

Regular
employee

Part-time
worker

Regular
employee

Part-time
worker

Construction male 18.5 27.0 5.6 18.0 3.7 22.5 4.7
female 3.0 2.2 0.8 66.9 24.1 2.2 0.8

Manufacturing male 11.9 27.0 5.7 30.0 6.3 15.8 3.3
female 2.0 4.3 4.6 41.1 44.1 1.9 2.0

Electricity, gas, heat
supply, and water

male 0.0 21.2 1.8 63.8 5.5 7.1 0.6
female 0.0 0.0 0.0 75.0 25.0 0.0 0.0

Information and
communications

male 2.7 61.5 7.2 16.6 2.0 9.0 1.0
female 0.0 26.6 14.9 34.0 18.9 3.6 2.0

Transport and postal
activities

male 10.5 2.6 0.9 56.6 18.9 7.9 2.6
female 3.3 0.0 0.0 30.6 66.1 0.0 0.0

Wholesale and retail trade male 11.5 4.8 1.6 19.7 6.6 41.8 14.0
female 2.5 3.0 6.3 26.0 55.4 2.2 4.6

Finance and insurance male 7.2 3.9 0.4 47.3 5.0 32.8 3.4
female 0.0 0.8 0.4 44.1 24.2 19.7 10.8

Real estate and goods
rental and leasing

male 14.9 1.5 0.6 36.7 14.3 23.0 9.0
female 6.1 0.0 0.0 50.9 33.9 5.5 3.6

Table 2. Employment ratio [%] by industry and age.

Age

Industry ∼ 29 30 ∼ 39 40 ∼ 49 50 ∼ 59 60 ∼
Construction 19.4 36.9 55.3 40.3 48.1
Manufacturing 30.3 42.3 54.5 41.7 31.2
Electricity, gas, heat supply, and water 12.5 50.0 95.8 29.2 12.5
Information and communications 43.5 60.8 57.2 29.1 9.4
Transport and postal activities 23.9 39.4 59.9 44.7 32.1
Wholesale and retail trade 37.8 39.1 47.6 37.8 37.7
Finance and insurance 32.6 36.4 59.1 49.1 22.8
Real estate and goods rental and leasing 24.3 34.2 40.5 35.5 65.5

Table 3. Parameters of probability distribution of “occupied area” and “percent staying indoors”.

Occupied area [worker/m2] Percent staying indoors [-]

Status or type of employment μ σ μ σ

Administrative and managerial workers and
clerical workers 0.162 0.055 0.694 0.115
Sales workers 0.193 0.059 0.477 0.052
Professional and engineering workers 0.149 0.053 0.647 0.122

rental period and the risk of the time required to search for
the next tenant after cancelation occurs.

To estimate the risk of cancelation, we assume that
one contract period is 24 months based on Japanese laws
and business practices. A tenant can cancel without a
penalty if the lender is notified six months before the con-
tract term expires. If there is no notice, the lease contract
is automatically extended. Equation (14) expresses the
probability that a tenant will cancel a lease contract in the
mth month. In this model, we assume that no tenants cancel

with penalty.

panc(m) =
{

q19−m
anc (m = 1, · · · , 18)

0 (m = 19, · · · 24)
(14)

The number of months required to search for a new
tenant is represented by a negative binomial distribution,
as shown in Equation (15). Assuming that μsek and σ sek
are the average and variance of the number of months
required to search for a new tenant, the parameters qsek and
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Figure 7. Average and standard deviation of the vacancy rate
for values of μsek and qsek .

Figure 8. Changes in the vacancy rate of Tokyo office buildings
over time.

α of Equation (15) can be calculated according to Equation
(16).

psek(j ) = (1 − qsek)
α

(
j + α − 1

j

)
qj

sek (15)

qsek = 1 − μsek

σ 2
sek

, α = μ2
sek

σ 2
sek−μsek

(16)

Figure 7 shows the calculation results for the office
vacancy rate for 20 years using the above model. If
the probability of cancelation or the number of months
required to search for new tenants increases, the vacancy
rate will rise. The vacancy rates at points A, B, and C
are 2%, 6%, and 12%, respectively. In order to know the
effect of the vacancy rate, we conduct a case study for these
three points in the later sections. See Togashi (2018b) for a
detailed discussion of the average vacancy rate.

Figure 8 shows changes in the vacancy rate for Tokyo
office buildings over the past 40 years (CBRE Japan 2006).
The vacancy rate approaches 2% during the bubble market
in the 1980s, whereas the rate is around 10% during reces-
sions, as in the first half of the 1990s. In cities other than
Tokyo, vacancy rates of around 10% are not uncommon.
Therefore, vacancy rates of 2% and 12% (points A and C
in Figure 7) can represent vacancy rates during a boom and
a recession, respectively.

Finally, by integrating the stochastic models of office
worker behavior, tenant characteristics, and tenant replace-
ment, we can simulate the office worker density. Figure 9

Figure 9. Simulation sample of the occupancy rate change by
time of day.

illustrates an example simulation result with a box-plot dia-
gram. In this simulation, the number of tenants is 12, and
each tenant rents floor space of 500 m2. The upper dia-
gram of the figure shows the result for the average of 12
tenants, and the lower diagram shows that for a single ten-
ant. The swing width is larger in the lower diagram than
in the upper diagram because changes of the office worker
densities of individual tenants can be offset when the entire
building is considered. This distinction matters for our sub-
sequent analyses because HVAC equipment for individual
tenants, such as air handling units, is operated under the
uncertainty shown in the lower diagram, whereas HVAC
equipment installed for the entire building, such as a cen-
tral heat source machine, is operated under the uncertainty
shown in the upper diagram. Therefore, energy conserva-
tion investments for these types of equipment do not face
equivalent risks, as is discussed in a later section.

2.5. Stochastic model of energy cost
Conversion rates are needed to convert energy consump-
tion to a monetary value. These flat rates may fluctuate
over the long term. Figure 10 shows the cost of electric-
ity and gas in Japan over the past 45 years, with the value
in 2016 set at 1.0 (METI 2017). The upper panel dis-
plays the raw data, and the lower panel shows the moving
average over three years decomposed into trend and irreg-
ular components. Therefore, the energy costs of electricity
and gas (ECelc [yen/kWh] and ECgas [yen/m3], respec-
tively) can each be broken down into a trend component
(TEC) and an irregular component (IEC), as shown in Equa-
tions (17) and (18). ECBSelc and ECBSgas are the baseline
costs of electricity and gas, which are 30 yen/kWh and
100 yen/m3, respectively. As can be seen from the lower
panel of Figure 10, the irregular components of electricity
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Figure 10. Electricity and gas cost rate in Japan.

and gas do not independently change stochastically but
rather have similar tendencies. Therefore, we model these
values using a bivariate normal distribution, as shown in
Equation (19).

The trend component TEC is set equal to 1.0 in this
study. To examine the influence of this factor, it is nec-
essary for the model of buildings and equipment to express
trends over time as well. However, our research model does
not express the long-term deterioration of performance due
to the aging of facilities or improvements in performance
due to repairs.

Unlike electricity and gas charges, water charges not
tend to fluctuate in the short term in conjunction with inter-
national crude oil prices because water charges are mainly
affected by changes in the long-term population in the
region, the development and aging of water supply facili-
ties, and so on. Because the cost of water differs greatly by
region, it is more important to correctly reflect the regional
disparity than to correctly reflect the change over time. In
this study, the office building considered is assumed to be
located in Tokyo, and the costs of water and sewage are
each set at 300 yen/m3.

ECelc(t) = ECBSelc(TECelc(t) + IECelc) (17)

ECgas(t) = ECBSgas(TECgas(t) + IECgas) (18)

(
IECelc
IECgas

)
= N

((
μelc
μgas

)
,
(

σ 2
elc ρσelcσgas

ρσelcσgas σ 2
gas

))

= N
((

0.00218
0.00196

)
,
(

0.00233 0.00229
0.00229 0.00271

))
(19)

3. Stochastic energy consumption predictions
In this section, we discuss the implementation of the Monte
Carlo method by combining the energy consumption

Figure 11. Plan of office.

prediction model with the stochastic models introduced in
the previous section. Using this method, we can obtain
the energy reduction due to the introduction of energy
efficiency equipment as a probability distribution.

3.1. Simulation conditions
The target of the simulation is a seven-story tenant office
building located in Tokyo. This is the standard building
used in Japan’s energy conservation law (i.e. in the Act
on Rationalizing Energy Use). Figure 11 shows a refer-
ence floor plan. The second to the seventh floors are the
tenant floors, and the north and south sides of these floors
each have one tenant, so there are twelve tenants in total.
As the floor area of each tenant is about 500 m2, the total
floor space for lending is about 6000 m2. Figure 12 shows
the heat source and air conditioning systems in this exam-
ple. The heat source machine includes an air heat source
heat pump (AHP) and a direct fired absorption chiller, and
it is a two-pump system with a primary and a secondary
pump. Two air handling units (AHU: perimeter and inte-
rior) are installed for each tenant. Table 4 shows the brief
specifications of the HVAC equipment installed into such
a building, and further detailed information are provided
by the Society of Heating, Air-conditioning and Sanitary
Engineers (SHASE) (2016).

Due to space limitations, we do not describe the full
building model in detail here but rather discuss only the
main calculation methods. We create the simulation model
using the program library described by Togashi (2016).
The accuracy of the thermal load calculation of this library
is verified using BESTEST (Judkoff and Neymark 1995;
Togashi and Tanabe 2009), and the accuracy of the HVAC
system calculations is verified according to SHASE guide-
lines (Ono, Ito, and Yoshida 2017; SHASE 2016).

For the heat load calculation, the backward difference
is used with a time step of one hour. The zone is divided
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Figure 12. Heat source and air conditioning system.

into interior and perimeter zones, and we calculate the radi-
ant heat transfer and ventilation between the zones. Mass
points are set for each zone and each layer of the wall. The
solar radiation through a window is calculated based on the
incident angle characteristics of the glass. We also calcu-
late the solar radiation shielding effect due to the opening
and closing of blinds.

The heat source and air conditioning system is
expressed by combining sub-models, which include an air
heat source heat pump, a direct fired absorption chiller,
a cooling tower, a pump, and an air handling unit. The
variables passed between these sub-models are solved
using the quasi-Newton method. The input ratio of the
heat pump, the flow and pressure characteristics of the
pump and the fan, the regenerator, and the resistance of
ducts or pipes are expressed by their characteristic for-
mulas. The direct fired absorption chiller, cooling tower,
and cold / hot water coil are all expressed by physical

formulas. The amount of power generated by solar cells
is calculated according to Japanese Industrial Standards
C8907.

We also calculate the water consumption of a toilet
bowl to evaluate the amount of water conserved by using
water-saving toilets. The daily water usage of a toilet bowl,
Wdy , can be expressed using Equation (20). R is the number
of times the toilet is used, W is the water consumption per
use, the subscript cls indicates a flush toilet, and the sub-
script unl indicates a urinal. Different parameters are used
for men and women.

Wdy = Hsty(RunlWunl + RclsWcls) (20)

Figure 13 shows the results of the annual primary
energy consumption simulation. The results for several
programs described in the above guidelines are also shown.
The annual primary energy consumption is 223 MJ/(m2yr),
which is typical for office buildings in Tokyo, and the
energy consumption levels for the evaluated programs are
comparable to other results. For this verification, we use
the boundary conditions described in the guidelines, but
for our analysis using the Monte Carlo method, we replace
these boundary conditions with the output of the stochastic
model introduced in section 2.

In all, we consider five energy conservation invest-
ments: a high-efficiency heat source, CO2-based ventila-
tion control, a total heat exchanger, water-saving toilets,
and a photovoltaics panel, which we denote as A, B, C, D,
and E hereafter. Table 5 shows the costs and calculation
methods for these investments.

3.2. Probability distribution of energy consumption
We next calculate the probability distributions of energy
reductions using the Monte Carlo method. As mentioned,
the boundary conditions are generated using the stochas-
tic model developed in the previous section. We set the
parameters based on the assumption of an average vacancy

Table 4. Specifications of main equipment.

Equipment Specification Number

Absorption chiller Cooling capacity: 527 kW, Heating capacity: 346 kW, Gas
consumption: 32.4 m3/h

1

Cooling tower Cooling capacity : 939.4 kW, Fan electricity: 7.5 kW 1
Chilling water and hot water primary pump Flow rate: 1512 L/min, Pressure rise: 147 kPa, Electricity:

7.5 kW
2

Cooling water pump Flow rate: 2693 L/min, Pressure rise: 245 kPa, Electricity:
18.5 kW

1

Air heat source heat pump Cooling capacity: 300 kW, Heating capacity: 300 kW,
Electricity: 99.6 kW

2

Chilling water and hot water primary pump Flow rate: 860 L/min, Pressure rise: 147 kPa, Electricity:
3.7 kW

4

Chilling water and hot water secondary pump Flow rate: 1077 L/min, Pressure rise: 245 kPa, Electricity:
11.0 kW

6
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Figure 13. Calculation results of annual primary energy consumption.

Table 5. Costs and calculation methods for energy conservation investments.

Method Cost [yen] Calculation method

A: High-efficiency heat source 2,600,000 Air heat source heat pump:Chilling COP and heating COP are
changed from 3.0 to 4.5 and 3.0 to 3.5, respectively. Absorption
chiller:Improving efficiency at partial load by installing inverter
control of refrigerant

B: CO2-based ventilation 7,200,000 Controlling ventilation volume with number of occupants. CO2
generated by humans is fixed at 0.02 m3/(person/h). Fresh air
CO2 level is fixed at 400 ppm.

C: Total heat exchanger 12,000,000 Heat exchange efficiency is 70%. Supply air fan and return air fan
pressures are changed from 850 to 1050 Pa and 350 to 550 Pa,
respectively.

D: Water-saving toilets 3,000,000 Water use of closet and urinal are changed from 8.0 to 3.8 L/flush
and 2.8 to 0.8 L/flush, respectively.

E: Photovoltaics panels 16,200,000 Surface area: 300 m2, power generation efficiency: 18%, Angle:
30°

rate of 6% (Point B in Figure 7). The period of heating
runs from November to April, and the period of cool-
ing runs from May to October. When overtime workers
are present, the lights remain on. However, air condition-
ing stops running at the end of business hours. Through
repeated calculations, we generate 1000 predicted energy
consumption values.

Figure 14 shows the distribution of annual primary
energy consumption based on the results of 1000 sim-
ulations. The distribution spread occurs because energy
consumption is affected by the weather and the tenants’
conditions. The difference between the maximum and min-
imum energy consumption is doubled, and the impacts of
energy efficiency investments are affected by this uncer-
tainty. Figure 15 illustrates the distribution of the partial
load operations of AHP and AHU (No. 4-1) using a box-
plot diagram. The left panel shows the cooling operation,
and the right panel shows the heating operation. Com-
pared with AHP, the variation in the occurrence of AHU

becomes very large when the partial load is less than 40%
for both cooling and heating operations for the same rea-
son as that explained earlier regarding the variation in the
occupancy rate (Figure 9). The AHP load is determined by
a combination of activities of various tenants, whereas the
AHU load is greatly affected by the characteristics of a sin-
gle tenant. Therefore, introducing inverters for AHU for
individual tenants and introducing inverters in heat source
equipment are both energy efficiency investments for low-
load operations, but they are strictly unequal in value. The
introduction of inverters to individual AHUs has more risk.
Figure 16 illustrates the distribution of daily water usage
per floor. For the same reason explained above, the varia-
tion in water consumption for a specific floor is very large
compared with that of the whole building. Therefore, the
value of introducing water-saving equipment for individ-
ual tenants differs from that of introducing a wastewater
recycling system or high efficiency pumps for the whole
building.
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Figure 14. Distribution of annual primary energy consumption.

In order to quantitatively evaluate the risk arising from
these uncertainties, we apply financial engineering meth-
ods to these calculation results, as discussed in the next
section.

4. Evaluation with financial engineering methods
4.1. Method of monetary conversion
The cost reduction in month m in the ith calculation is
expressed by Equation (21), where CF, FR, and RD are
the cash flow, flat rate, and energy reduction, respectively.
The maintenance cost strictly depends on the type and scale
of equipment, but, on average, it is said to be about 1.5%
of the initial investment amount (Technical Committee on
Electric Air Conditioning 1992). Therefore, in this study,
we also assume that 1.5% of the initial investment amount
is expensed every year. The present value of these cash
flows over 20 years (240 months), the DCF, is given by
Equation (22). Since there is a risk that the cash flow drops
too low, a risk premium (rp) is added to the interest rate Y.
In an established market, like those for shares and bonds,
the risk premium can be assessed using the capital asset
pricing model (CAPM). However, there are not enough
cases of energy efficiency investments to use this approach,

Figure 15. Distribution of partial load operations.

Figure 16. Distribution of daily water usage per floor.
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Table 6. Correlation coefficient of the reduction in utility cost by each energy efficiency investment.

O1 O2 O3 O4 A B C D E

O1: Total number of months tenants stayed 1.000 0.196* − 0.015 0.034 0.219* 0.071* 0.081* 0.176* 0.031
O2: Total number of occupants – 1.000 0.042 − 0.016 0.231* − 0.322* − 0.335* 0.956* − 0.016
O3: Average outdoor temperature – – 1.000 0.014 0.178* 0.042 − 0.050 0.030 − 0.006
O4: Total global horizontal radiation – – – 1.000 − 0.016 − 0.031 − 0.046 − 0.021 0.995*
A: High-efficiency heat source – – – – 1.000 − 0.137* − 0.280* 0.228* − 0.029
B: CO2-based ventilation – – – – – 1.000 0.977* − 0.308* − 0.038
C: Total heat exchanger – – – – – – 1.000 − 0.322* − 0.049
D: Water-saving toilets – – – – – – – 1.000 − 0.019
E: Photovoltaics panels – – – – – – – – 1.000

*p < 0.05.

and it is difficult to assess a risk premium from market
information.

CFi,m = RDelc,i,mFRelc + RDgas,i,mFRgas

+ RDwat,i,mFRwat + RDswg,i,mFRswg (21)

DCFi =
240∑

m=0

CFi,m
1

(1 + Y + rp)m/12 (22)

4.2. Evaluation of stochastic characteristics
We simulate the probability distributions of energy costs
that are reduced by the five energy efficiency investments
mentioned in the previous section. Table 6 shows the corre-
lation coefficient of the reduction in utility cost due to each
energy efficiency investment. The correlation coefficients
for tenant conditions (O1 and O2) and weather conditions
(O3 and O4) are also shown in Table 6.

O1 has the greatest impact on real estate value. Invest-
ments A and D have positive correlations with O1, whereas
investments B, C, and E have little correlation with O1. In
the case of multiple investment assets, risk can be reduced
by combining investments that are not positively corre-
lated, as we discuss later. Therefore, investments C, D, and
E are more advantageous than A and B are for reducing the
risk of the real estate business.

The existence of a tenant implies that of office work-
ers, but the correlation coefficient between O1 and O2 is
0.196, which is not high. This result is reasonable, how-
ever, because the number of office workers differs for
each tenant in this model. O2 is highly correlated with D,
which suggests that, although the number of toilet flushes
is influenced by the number of office workers and their
work hours, the influence of the former is larger. A is also
positively correlated with O2, but the correlation is small
because, unlike a toilet, a heat source system cannot com-
pletely shut off even when few people are present. B has
a negative correlation with O2 because, when the office
worker density is high, the amount of ventilation cannot
be reduced by the level of CO2. C also has a negative cor-
relation with O2 because a large number of office workers

Figure 17. Distribution of the discounted cash flow.

generates a large amount of internal heat, so it is better to
introduce outside air directly during the cool season. Thus,
a total heat exchanger is only effective over a shorter time
period.

4.3. Estimation of the risk premium for each energy
efficiency investment

Figure 17 shows the calculation results for the DCFi dis-
tribution setting rp equal to zero in Equation (22) in the
case of investment A. The distribution spreads to the left
and right, and there is a risk that the realized value is lower
than the average value E(DCFi). The expected value of this
downside of the distribution is expressed by Equation (23)
and is called the expected shortfall (ES). Dividing the ES
by E(DCFi) gives the risk associated with the present value
of one unit of investment, which is the risk premium rp
(Equation (24)). The interest rate Y in Equation (22) can
be calculated using the weighted average cost of capital
(WACC). In 2017, the average interest-bearing debt of a
Japan real estate investment trust (J-REIT) was lower than
0.8% (Kawai 2017), and the average dividend yield on a
J-REIT for a Tokyo office building was about 3.5%. The
office building considered in this study is smaller than the
average investment property owned by a J-REIT, and the
risk cannot be diversified by a portfolio, so the applica-
ble rates are slightly higher than these example rates for
J-REITs. Therefore, in this study, the ratios and interest
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Table 7. Risk premia for energy efficiency investments (Base case).

A: High-
efficiency

heat source

B:
CO2-based
ventilation

C: Total heat
exchanger

D:
Water-saving

toilets

E: Photo-
voltaics
panels

Average value E(DCFi) 13,557 kYen 22,093 kYen 11,615 kYen 22,597 kYen 29,274 kYen
Maximum value 12,699 kYen 16,765 kYen 8130 kYen 18,375 kYen 27,826 kYen
Minimum value 14,435 kYen 26,360 kYen 14,348 kYen 26,960 kYen 30,671 kYen
Expected shortfall ES 105 kYen 506 kYen 345 kYen 519 kYen 188 kYen
Risk premium rp 0.78% 2.29% 2.98% 2.30% 0.64%
Discount rate (i + rp) 3.58% 5.09% 5.78% 5.10% 3.44%

Table 8. Risk premia when the vacancy rate and probability model are changed.

Energy efficiency investments

Case
Weather

data
Tenant and
occupant

Energy
cost

Vacancy
rate A B C D E

1 random random random 6% 0.94% 2.51% 3.79% 2.37% 0.90%
2 random random random 2% 0.89% 2.55% 3.81% 2.37% same as case 1
3 random random random 12% 0.96% 2.35% 3.55% 2.58% same as case 1
4 constant random random 6% 0.69% 2.22% 4.15% same as case 1 0.50%
5 random constant random 6% 0.65% 1.06% 1.27% no risk same as case 1
6 random random constant 6% 0.82% 2.48% 3.76% 2.37% 0.74%

rates for debt and equity are assumed to be 40% and 60%
and 1.0% and 4.0%, respectively. The WACC is therefore
calculated as 2.8% (40% × 1.0% + 60% × 4.0%).

ES = E(DCFi|DCFi < E(DCFi)) (23)

rp = ES
E(DCFi)

(24)

Table 7 shows the results of calculating the risk pre-
mium for each energy efficiency investment. As mentioned
above, the tenant vacancy rate is assumed to be 6% (point
B in Table 7). Investment E has the lowest risk because
the amount of solar radiation is stable from year to year
even though the weather on any given day may be cloudy
or sunny. Investment A is lower risk than investments B
and C are. This result can be explained in Figure 9 in the
previous section. Since B and C are installed into individ-
ual air handling units, they are greatly affected by each
tenant. In contrast, A is provided for the entire building,
so the uncertainties of individual tenants are canceled out
and stabilized. Finally, investment D has a high-risk pre-
mium because it is strongly affected by the number of office
workers, as shown in Table 6.

To clarify the influence of the fluctuation of each
stochastic model on the value of the investments, the risk
premia were recalculated by replacing the stochastic model
with fixed boundary conditions and changing the vacancy
rate. The results of this recalculation are shown in Table 8.
The risk premia for investments A, B, C, and D differ
by about 0 to 0.3 points depending on the vacancy rates
(case 2 and 3), and these effects are smaller than the influ-
ence of the existence of three stochastic models on the risk

premia (case 4, 5, 6). Weather uncertainty affects the risk
premium of each energy efficiency investment, but it has
a particularly large impact on photovoltaics panels. Tenant
occupancy uncertainty greatly influences the risk premia of
energy efficiency investments in AHUs (B and C) but has a
smaller influence on the risk premium of an investment in
the heat source (A). The explanation provided for Figure 9,
Figures 15 and 16 applies here as well; the uncertainties of
individual tenants are offset in the case of heat sources but
not in the case of individual AHUs.

4.4. Optimal investment ratio for energy efficiency
investments

As mentioned earlier, Monte Carlo simulation enables us
to evaluate both the risk of and return to each energy
efficiency investment. Problems related to existing energy
efficiency investment may also be solved with this infor-
mation using financial engineering methods. For example,
it is said that the energy service company (ESCO) busi-
ness has a problem of cream skimming. ESCO businesses
are generally financed using one of two methods: “shared
savings” and “guaranteed energy savings.” The former is
funded by the owner, and the latter is funded by the ESCO.
Therefore, general investors do not directly appear in the
ESCO business. Due to this lack of access to financial
resources, especially in shared saving contracts, ESCOs
prefer very short payback periods, leading to lost oppor-
tunities for investment, which create the cream skimming
problem mentioned above (Langlois and Hansen 2012).
One effective solution to this problem is to allow general
investors to participate in addition to owners and ESCOs.
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Table 9. Initial costs of energy efficiency investments.

Energy efficiency investment Initial cost Basis

A: High-efficiency heat source 2,600,000 Difference from highly efficient models
B: CO2-based ventilation 7,200,000 300 thousand yen per one air handling unit
C: Total heat exchanger 10,500,000 AHU unit price: 295 - > 365 yen / CMH
D: Water-saving toilets 3,000,000 Difference between water-saving type and general type
E: Photovoltaics panels 16,200,000 300,000 yen / kW

Figure 18. Distribution of the IRR.

To do so, several ESCO projects need to be bundled and
securitized. In the future, when such securitization is real-
ized, it is necessary to optimally combine the many ESCO
projects (energy efficiency investments).

If the covariances of the IRRs of each energy effi-
ciency investment are calculated, we can obtain an optimal
investment ratio using modern portfolio theory (Markowitz
1952). Thus, we solve Equation (25) for IRR, where I
is the initial investment. Table 9 shows the costs of the
investments. The covariances of the IRRs of each energy
efficiency investment are calculated based on these initial
costs and 1000 simulation results.

I =
240∑

m=0

CFi,m
1

(1 + IRR)m/12 (25)

Figure 18 shows the distribution of the IRR for each
energy efficiency investment, and Table 10 shows the aver-
ages and standard deviations of the investments. The IRR
of investment D is high, but it also has a large variation.
By contrast, investment E has low average values and a
small variation. A traditional building energy simulation

that only evaluates the average IRRs would conclude that
it is optimal to invest in D, B, A, E, and C, in that order,
until funds run out. However, in this study, we show how
to reduce risk by combining each investment.

The expected rate of return and standard deviation of
a portfolio combining n investments can be expressed by
Equations (26) and (27), where rn, wn, σ n

2, and σ nm are the
expected rate of return, the combining ratio, the variance
of the nth investment, and the covariance of the nth and mth

investment, respectively.

rPF =
∑
i=0

wiri (26)

σPF =
∑
i=0

∑
j =0

wiwj σij (27)

Here, we assume that investors are risk averse. This
assumption means that investors prefer a high expected rate
of return per standard deviation, which means they prefer a
portfolio in the upper left of Figure 19. The combining ratio
at which the variance of the portfolio is the smallest with
respect to a given expected rate of return can be calculated
with Equation (28).⎡

⎢⎢⎢⎢⎢⎢⎢⎣

σ11 σ12 · · · σ1n −r1 −1
σ21 σ22 · · · σ2n −r2 −1

...
...

. . .
...

...
...

σn1 σn2 · · · σnn −rn −1
r1 r2 · · · rn 0 0
1 1 · · · 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

w1
w2
...

wn
λ

θ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0

rPF
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(28)

Using Equations (26) to (28) and defining rn and σ n as the
average and standard deviation of the IRR, the expected
rate of return and standard deviation of a combination of

Table 10. Average and standard deviation of the IRR.

Standard deviation Average

Vacancy rate = 2% 6% 12% Vacancy rate = 2% 6% 12%

A: High-efficiency heat source 1.22% 1.28% 1.40% 33.2% 32.6% 31.8%
B: CO2-based ventilation 1.63% 1.57% 1.55% 18.6% 18.3% 18.0%
C: Total heat exchanger 1.04% 1.02% 1.17% 1.5% 1.3% 1.0%
D: Water-saving toilets 4.23% 4.22% 4.40% 49.2% 47.4% 44.8%
E: Photovoltaics panels 0.33% 10.3%
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Table 11. Variance-covariance matrix of energy efficiency investments (Vacancy rate = 6%).

A: High-
efficiency

heat source

B:
CO2-based
ventilation

C: Total heat
exchanger

D:
Water-saving

toilets

E: Photo-
voltaics
panels

A: High-efficiency heat source 0.01645 0.00365 − 0.00077 0.00753 0.00106
B: CO2-based ventilation – 0.02451 0.01228 − 0.01472 0.00047
C: Total heat exchanger – – 0.01031 − 0.00551 0.00012
D: Water-saving toilets – – – 0.17798 0.00056
E: Photovoltaics panels – – – – 0.00108

multiple energy efficiency investments can be calculated.
Unlike stocks, energy efficiency investments in building
facilities cannot be sold short, so wn is set to be greater
than zero.

Table 11 shows the variance-covariance matrix of the
ener efficiency investments, and Figure 19 shows the aver-
ages and standard deviations of the IRRs of single invest-
ments and portfolios. The thin curve in Figure 19 reflects
a combination of two investments. When the covariance
between the two investments is negative, as in the case
of investments B and D, the expected rate of return per
standard deviation can be greatly improved by combining
the two investments, as shown in the figure. In contrast,
when two investments are positively correlated, as in the
case of investments B and C, the expected rate of return
per standard deviation hardly changes even when the two
investments are combined. The optimal investment alloca-
tion calculated using Equation (28) is the thick curve on the
upper left side of Figure 19. This curve is generally called
the efficient frontier.

In the case of raising funds at the interest rate Y, the
negative cash flow of interest rate Y can be avoided with
certainty by choosing not to invest. The position obtained
by this selection is the point in Figure 19 at which the stan-
dard deviation is zero and the expected rate of return is Y.
Y1 is the point at which the interest is 2.8%, and Y2 is that
at which the interest rate is 8.0%. The optimal investment
must be chosen over all positions, including those that do
not invest. Therefore, the allocation that maximizes the
expected rate of return per standard deviation is a tangent
drawn from Y1 or Y2 to the efficient frontier. These contact
points T1 or T2 are called tangency portfolios.

Figure 19. Average and standard deviation of IRR of each
energy efficiency investment and portfolio.

The allocation ratio of energy efficiency investments at
points T1 and T2, the standard deviation, and the expected
rate of return of the portfolio are shown in Table 12. The
effect of the vacancy rate is much smaller than that of
the interest rate. The expected rate of return per standard
deviation is larger in this case than when concentrating
on a single investment. When the interest rate is low
(Y1), it is effective to increase the proportion of invest-
ment in E, which has a low variation and high accuracy.
In contrast, when the interest rate is high (Y2), it is effec-
tive to increase the proportion of investment in high-risk,
high-return energy efficiency projects.

The average IRR value of investment E is 10.3%, so,
when the interest rate is 8.0% (Y1), this investment pro-
vides a profit of only 2.3%. However, the optimal invest-
ment allocation ratio in investment E is about 40%, which
is not small. We obtain this result because the probabil-
ity characteristics of the IRR of investment E are different

Table 12. Optimum investment allocation ratio calculated by portfolio theory.

Y1 (interest rate = 2.8%) Y2 (interest rate = 8.0%)

Vacancy rate = 2% 6% 12% Vacancy rate = 2% 6% 12%

A: High-efficiency heat source 20.54% 18.02% 15.17% 47.41% 42.22% 36.70%
B: CO2-based ventilation 7.35% 6.64% 7.40% 12.60% 11.47% 12.98%
C: Total heat exchanger 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
D: Water-saving toilets 3.59% 3.12% 2.52% 7.25% 6.42% 5.25%
E: Photovoltaics panels 68.52% 72.22% 74.91% 32.75% 39.88% 45.07%
Portfolio expected rate of return 17.00% 16.00% 15.00% 25.00% 23.00% 21.00%
Portfolio standard deviation 0.42% 0.40% 0.39% 0.72% 0.68% 0.66%
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from those of the other energy efficiency investments, so
combining other investments with investment E reduces
the overall risk. For the same reason, the allocation ratio
in investment B is not 0% even though its expected rate
of return per standard deviation is smaller than those of
the other investments. On the other hand, the investment
allocation ratio for investment C is 0% because the proba-
bility characteristics of investment C are similar to those
of investment B, so investment B, which has a higher
expected rate of return than investment C has, is given
priority.

5. Conclusions
The impact of an energy efficiency investment is affected
by the operating conditions of the equipment related to that
investment. As shown in Figures 15 and 16, the uncertainty
of the operating conditions of the equipment is affected
by the building zone targeted by the equipment. If the
equipment handles many zones, the characteristics of each
zone are canceled and stabilized, but if the equipment cov-
ers only a few zones, the operating conditions are greatly
affected by the special natures of these few zones. There-
fore, risk assessment becomes relatively important when
the investment target is equipment covering a small num-
ber of zones. It should be noted, however, that operating
conditions cannot be offset even when the equipment cov-
ers many zones if all zones behave similarly. Because this
analysis considered a tenant office building, the differences
in behaviors across tenants were effective in stabilizing the
load on the entire building, but in the case of a self-owned
building, this effect is expected to be small. On the con-
trary, a commercial tenant building has greater loads dif-
ferences across tenants than a tenant office building does,
so the risk reduction effect on the entire building is large.

As shown in Table 7, if the uncertainty of the energy-
saving effect of individual equipment is reflected in the
calculation, the risk premium is different for each invest-
ment. For example, in Table 7, the discount rates of the
high-efficiency heat source and the total heat exchanger are
3.58% and 5.78%, respectively. Capitalizing the cash flow
using these values produces a difference of over 60% in
the current value. This difference is not reflected at all by
the traditional payback period method, and there is a possi-
bility that relatively high-risk investments may be carried
out in reality. The effect of uncertainty on the risk premium
depends on the characteristics of the equipment associated
with the investment. For example, according to the results
of this study, photovoltaics panels are most affected by
outside air conditions, but total heat exchangers and CO2-
based ventilation are most affected by the uncertainty of
tenants’ behavior. Since it is not realistic to perform calcu-
lations using all possible probabilistic models for each type
of energy efficiency equipment, it is necessary to clarify
the stochastic events to which each facility is susceptible.

For example, this study indicates that unless tenant behav-
ior is treated stochastically, the discount rates of total heat
exchangers and CO2-based ventilation deviate by 2 to 3%.
On the other hand, the discount rate shifts by only 0.3 to
0.5% if weather conditions are not treated stochastically.

The 2% and 12% vacancy rates used in the vacancy rate
sensitivity analysis express two extreme market conditions
in Japan, as explained in Figure 8. As shown in Table 8,
however, the influence of these values on the discount rate
is less than 1%, which is not very large. In Case 4 in
the same table, the discount rate changes greatly, meaning
that the influence of occupant behavior is large. In par-
ticular, Japan has large numbers of overtime and holiday
workers, and the facility operations for these workers are
likely to have a large influence on the results of this anal-
ysis. For example, in this study, lights are kept on during
overtime periods, but the air conditioning stops running;
uncertainty will increase if air conditioning is also operated
for overtime workers.

The probabilistic characteristics of energy conservation
investments obtained by the methods used in this study
allow for different investigations from those using con-
ventional methods by using financial engineering methods.
The problem of optimal investment allocations considered
in this analysis is a typical example. By applying this
method rather than the simple payback period method, we
find different optimal investment orders depending on the
magnitude of the interest rate and the correlations between
energy efficiency investments, as shown in Table 12. How-
ever, in reality, investment in one building is too small
scale, and the investment amount cannot be adjusted con-
tinuously. In addition, constructing this research model
research is very time consuming, and the calculation load
is very large. For example, in this study, we obtain a
stochastic distribution by performing a 20-year simula-
tion for 10,000 m2 office buildings 1000 times, and this
simulation took about ten hours for each case. The cen-
tral processing units used to perform simulation was an
Intel Core i7-5820, which is a high-end processor capable
of parallel calculation of 12 threads. Increasing the num-
ber of energy efficiency investments investigated increases
the calculation time. For some time, such studies have
only been possible at the research level and are impos-
sible in the context of daily design work. However, now
that computers are evolving to strengthen parallelization,
the computing environment for repeating an independent
calculation many times using the Monte Carlo method,
as in this analysis, will continue to improve. Real-option
evaluation can be expected as an application of the stochas-
tic characteristics obtained by this analysis. For example,
although the simulation period was set to 20 years in
this study, in reality, a typical HVAC system is used
for more than 20 years. Thus, a real-option valuation
could be performed to evaluate the replacement of HVAC
equipment.
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In this study, the risk levels of energy efficiency invest-
ments in a building are evaluated using the Monte Carlo
method. In order to apply the Monte Carlo method, the
boundary conditions of the building energy simulation,
which are the weather process, office worker behavior,
tenants’ characteristics, and tenant replacement, are repre-
sented by stochastic models. Using these stochastic mod-
els, we run repeated energy simulations to predict the prob-
ability distributions of energy reduction amounts. Based on
the expected shortfall, we calculate the risk premia needed
to discount the utility costs reduced by each energy-saving
investment along with the variance and covariance matrix
of the IRRs of each energy efficiency investment. Based
on this matrix, we apply modern portfolio theory to deter-
mine the optimal energy efficiency investment allocation
ratio considering the risk associated with each investment.
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